Gemini를 사용하여 YouTube 동영상 요약

이 샘플은 Gemini를 사용하여 YouTube 동영상을 요약하는 방법을 보여줍니다.

코드 샘플

Go

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Go 설정 안내를 따르세요. 자세한 내용은 Vertex AI Go API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithYTVideo shows how to generate text using a YouTube video as input.
func generateWithYTVideo(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Write a short and engaging blog post based on this video."},
			{FileData: &genai.FileData{
				FileURI:  "https://www.youtube.com/watch?v=3KtWfp0UopM",
				MIMEType: "video/mp4",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Okay, here’s a short and engaging blog post based on the provided video.
	//
	// **Google's 25th: A Look Back at What We've Searched**
	// ...

	return nil
}

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithYoutubeVideo {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with YouTube video input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromUri("https://www.youtube.com/watch?v=3KtWfp0UopM", "video/mp4"),
                  Part.fromText("Write a short and engaging blog post based on this video.")),
              null);

      System.out.print(response.text());
      // Example response:
      // 25 Years of Curiosity: A Google Anniversary Dive into What the World Searched For
      //
      // Remember a time before instant answers were just a click away? 25 years ago, Google
      // launched, unleashing a wave of curiosity that has since charted the collective interests,
      // anxieties, and celebrations of humanity...
      return response.text();
    }
  }
}

Node.js

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateText(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const prompt = 'Write a short and engaging blog post based on this video.';

  const ytVideo = {
    fileData: {
      fileUri: 'https://www.youtube.com/watch?v=3KtWfp0UopM',
      mimeType: 'video/mp4',
    },
  };

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [ytVideo, prompt],
  });

  console.log(response.text);

  // Example response:
  //  Here's a short blog post based on the video provided:
  //  **Google Turns 25: A Quarter Century of Search!**
  //  ...

  return response.text;
}

Python

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Python 설정 안내를 따르세요. 자세한 내용은 Vertex AI Python API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

response = client.models.generate_content(
    model=model_id,
    contents=[
        Part.from_uri(
            file_uri="https://www.youtube.com/watch?v=3KtWfp0UopM",
            mime_type="video/mp4",
        ),
        "Write a short and engaging blog post based on this video.",
    ],
)

print(response.text)
# Example response:
# Here's a short blog post based on the video provided:
#
# **Google Turns 25: A Quarter Century of Search!**
# ...

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저 참조하기