Resumir un archivo de vídeo con audio con Gemini Multimodal

En este ejemplo se muestra cómo resumir un archivo de vídeo con audio y devolver capítulos con marcas de tiempo.

Investigar más

Para obtener documentación detallada que incluya este código de muestra, consulta lo siguiente:

Código de ejemplo

Go

Antes de probar este ejemplo, sigue las Go instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Go de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithVideo shows how to generate text using a video input.
func generateWithVideo(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: `Analyze the provided video file, including its audio.
Summarize the main points of the video concisely.
Create a chapter breakdown with timestamps for key sections or topics discussed.`},
			{FileData: &genai.FileData{
				FileURI:  "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
				MIMEType: "video/mp4",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Here's an analysis of the provided video file:
	//
	// **Summary**
	//
	// The video features Saeka Shimada, a photographer in Tokyo, who uses the new Pixel phone ...
	//
	// **Chapter Breakdown**
	//
	// *   **0:00-0:05**: Introduction to Saeka Shimada and her work as a photographer in Tokyo.
	// ...

	return nil
}

Java

Antes de probar este ejemplo, sigue las Java instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Java de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithVideo {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    String prompt =
        " Analyze the provided video file, including its audio.\n"
            + " Summarize the main points of the video concisely.\n"
            + " Create a chapter breakdown with timestamps for key sections or topics discussed.";
    generateContent(modelId, prompt);
  }

  // Generates text with video input
  public static String generateContent(String modelId, String prompt) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromText(prompt),
                  Part.fromUri(
                      "gs://cloud-samples-data/generative-ai/video/pixel8.mp4", "video/mp4")),
              null);

      System.out.print(response.text());
      // Example response:
      // Here's a breakdown of the video:
      //
      // **Summary:**
      //
      // Saeka Shimada, a photographer in Tokyo, uses the Google Pixel 8 Pro's "Video Boost" feature
      // to ...
      //
      // **Chapter Breakdown with Timestamps:**
      //
      // * **[00:00-00:12] Introduction & Tokyo at Night:** Saeka Shimada introduces herself ...
      return response.text();
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las Node.js instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Node.js de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const prompt = `
  Analyze the provided video file, including its audio.
  Summarize the main points of the video concisely.
  Create a chapter breakdown with timestamps for key sections or topics discussed.
 `;

  const video = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/video/pixel8.mp4',
      mimeType: 'video/mp4',
    },
  };

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [video, prompt],
  });

  console.log(response.text);

  return response.text;
}

Python

Antes de probar este ejemplo, sigue las Python instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Python de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
prompt = """
Analyze the provided video file, including its audio.
Summarize the main points of the video concisely.
Create a chapter breakdown with timestamps for key sections or topics discussed.
"""
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        Part.from_uri(
            file_uri="gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
            mime_type="video/mp4",
        ),
        prompt,
    ],
)

print(response.text)
# Example response:
# Here's a breakdown of the video:
#
# **Summary:**
#
# Saeka Shimada, a photographer in Tokyo, uses the Google Pixel 8 Pro's "Video Boost" feature to ...
#
# **Chapter Breakdown with Timestamps:**
#
# * **[00:00-00:12] Introduction & Tokyo at Night:** Saeka Shimada introduces herself ...
# ...

Siguientes pasos

Para buscar y filtrar ejemplos de código de otros Google Cloud productos, consulta el Google Cloud navegador de ejemplos.