Elaborare un file PDF con Gemini

Questo esempio mostra come elaborare un documento PDF utilizzando Gemini.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Python.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

prompt = """
You are a highly skilled document summarization specialist.
Your task is to provide a concise executive summary of no more than 300 words.
Please summarize the given document for a general audience.
"""

pdf_file = Part.from_uri(
    file_uri="gs://cloud-samples-data/generative-ai/pdf/1706.03762v7.pdf",
    mime_type="application/pdf",
)

response = client.models.generate_content(
    model=model_id,
    contents=[pdf_file, prompt],
)

print(response.text)
# Example response:
# Here is a summary of the document in 300 words.
#
# The paper introduces the Transformer, a novel neural network architecture for
# sequence transduction tasks like machine translation. Unlike existing models that rely on recurrent or
# convolutional layers, the Transformer is based entirely on attention mechanisms.
# ...

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .