Procesa un archivo PDF con Gemini
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En este ejemplo, se muestra cómo procesar un documento PDF con Gemini.
Explora más
Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:
Muestra de código
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],[],[],[],null,["# Process a PDF file with Gemini\n\nThis sample shows you how to process a PDF document using Gemini.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Document understanding](/vertex-ai/generative-ai/docs/multimodal/document-understanding)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google import genai\n from google.genai.types import HttpOptions, Part\n\n client = genai.Client(http_options=HttpOptions(api_version=\"v1\"))\n model_id = \"gemini-2.5-flash\"\n\n prompt = \"\"\"\n You are a highly skilled document summarization specialist.\n Your task is to provide a concise executive summary of no more than 300 words.\n Please summarize the given document for a general audience.\n \"\"\"\n\n pdf_file = Part.from_uri(\n file_uri=\"gs://cloud-samples-data/generative-ai/pdf/1706.03762v7.pdf\",\n mime_type=\"application/pdf\",\n )\n\n response = client.models.generate_content(\n model=model_id,\n contents=[pdf_file, prompt],\n )\n\n print(response.text)\n # Example response:\n # Here is a summary of the document in 300 words.\n #\n # The paper introduces the Transformer, a novel neural network architecture for\n # sequence transduction tasks like machine translation. Unlike existing models that rely on recurrent or\n # convolutional layers, the Transformer is based entirely on attention mechanisms.\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=googlegenaisdk)."]]