A partire dal 29 aprile 2025, i modelli Gemini 1.5 Pro e Gemini 1.5 Flash non sono disponibili nei progetti che non li hanno mai utilizzati, inclusi i nuovi progetti. Per maggiori dettagli, vedi
Versioni e ciclo di vita dei modelli.
Genera testo da prompt multimodale
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Questo esempio mostra come generare testo da un prompt multimodale utilizzando il modello Gemini. Il prompt è composto da tre immagini e due prompt di testo. Il modello genera una risposta di testo che descrive le immagini e i prompt di testo.
Esempio di codice
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],[],[],[],null,["# Generate text from multimodal prompt\n\nThis sample demonstrates how to generate text from a multimodal prompt using the Gemini model. The prompt consists of three images and two text prompts. The model generates a text response that describes the images and the text prompts.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google import genai\n from google.genai.types import HttpOptions, Part\n\n client = genai.Client(http_options=HttpOptions(api_version=\"v1\"))\n # TODO(Developer): Update the below file paths to your images\n # image_path_1 = \"path/to/your/image1.jpg\"\n # image_path_2 = \"path/to/your/image2.jpg\"\n with open(image_path_1, \"rb\") as f:\n image_1_bytes = f.read()\n with open(image_path_2, \"rb\") as f:\n image_2_bytes = f.read()\n\n response = client.models.generate_content(\n model=\"gemini-2.5-flash\",\n contents=[\n \"Generate a list of all the objects contained in both images.\",\n Part.from_bytes(data=image_1_bytes, mime_type=\"image/jpeg\"),\n Part.from_bytes(data=image_2_bytes, mime_type=\"image/jpeg\"),\n ],\n )\n print(response.text)\n # Example response:\n # Okay, here's a jingle combining the elements of both sets of images, focusing on ...\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=googlegenaisdk)."]]