Generar texto desde un mensaje multimodal

En este ejemplo, se muestra cómo generar texto a partir de un prompt multimodal con el modelo de Gemini. El mensaje consta de tres imágenes y dos prompts de texto. El modelo genera una respuesta de texto que describe las imágenes y los prompts de texto.

Muestra de código

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
# TODO(Developer): Update the below file paths to your images
# image_path_1 = "path/to/your/image1.jpg"
# image_path_2 = "path/to/your/image2.jpg"
with open(image_path_1, "rb") as f:
    image_1_bytes = f.read()
with open(image_path_2, "rb") as f:
    image_2_bytes = f.read()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "Generate a list of all the objects contained in both images.",
        Part.from_bytes(data=image_1_bytes, mime_type="image/jpeg"),
        Part.from_bytes(data=image_2_bytes, mime_type="image/jpeg"),
    ],
)
print(response.text)
# Example response:
# Okay, here's a jingle combining the elements of both sets of images, focusing on ...
# ...

¿Qué sigue?

Para buscar y filtrar muestras de código para otros Google Cloud productos, consulta el Google Cloud navegador de muestras.