將系統指令設為多模態 AI 模型

本範例說明如何為多模態 AI 模型設定系統指令

深入探索

如需包含這個程式碼範例的詳細說明文件,請參閱下列內容:

程式碼範例

Go

在試用這個範例之前,請先按照Go使用用戶端程式庫的 Vertex AI 快速入門中的操作說明進行設定。 詳情請參閱 Vertex AI Go API 參考說明文件

如要向 Vertex AI 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithSystem shows how to generate text using a text prompt and system instruction.
func generateWithSystem(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := genai.Text("Why is the sky blue?")
	config := &genai.GenerateContentConfig{
		SystemInstruction: &genai.Content{
			Parts: []*genai.Part{
				{Text: "You're a language translator. Your mission is to translate text in English to French."},
			},
		},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Pourquoi le ciel est-il bleu ?

	return nil
}

Java

在試用這個範例之前,請先按照Java使用用戶端程式庫的 Vertex AI 快速入門中的操作說明進行設定。 詳情請參閱 Vertex AI Java API 參考說明文件

如要向 Vertex AI 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithSystemInstruction {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with text and system instruction input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentConfig config =
          GenerateContentConfig.builder()
              .systemInstruction(
                  Content.fromParts(
                      Part.fromText("You're a language translator."),
                      Part.fromText("Your mission is to translate text in English to French.")))
              .build();

      GenerateContentResponse response =
          client.models.generateContent(modelId, "Why is the sky blue?", config);

      System.out.print(response.text());
      // Example response:
      // Pourquoi le ciel est-il bleu ?
      return response.text();
    }
  }
}

Node.js

在試用這個範例之前,請先按照Node.js使用用戶端程式庫的 Vertex AI 快速入門中的操作說明進行設定。 詳情請參閱 Vertex AI Node.js API 參考說明文件

如要向 Vertex AI 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const prompt = `
  User input: I like bagels.
  Answer:
  `;

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: prompt,
    config: {
      systemInstruction: [
        'You are a language translator.',
        'Your mission is to translate text in English to French.',
      ],
    },
  });

  console.log(response.text);

  return response.text;
}

Python

在試用這個範例之前,請先按照Python使用用戶端程式庫的 Vertex AI 快速入門中的操作說明進行設定。 詳情請參閱 Vertex AI Python API 參考說明文件

如要向 Vertex AI 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

from google import genai
from google.genai.types import GenerateContentConfig, HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="Why is the sky blue?",
    config=GenerateContentConfig(
        system_instruction=[
            "You're a language translator.",
            "Your mission is to translate text in English to French.",
        ]
    ),
)
print(response.text)
# Example response:
# Pourquoi le ciel est-il bleu ?

後續步驟

如要搜尋及篩選其他 Google Cloud 產品的程式碼範例,請參閱Google Cloud 範例瀏覽器