Definir instrucciones del sistema para el modelo de IA multimodal

En este ejemplo se muestra cómo definir instrucciones del sistema para un modelo de IA multimodal.

Investigar más

Para obtener documentación detallada que incluya este código de muestra, consulta lo siguiente:

Código de ejemplo

Go

Antes de probar este ejemplo, sigue las Go instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Go de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithSystem shows how to generate text using a text prompt and system instruction.
func generateWithSystem(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := genai.Text("Why is the sky blue?")
	config := &genai.GenerateContentConfig{
		SystemInstruction: &genai.Content{
			Parts: []*genai.Part{
				{Text: "You're a language translator. Your mission is to translate text in English to French."},
			},
		},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Pourquoi le ciel est-il bleu ?

	return nil
}

Java

Antes de probar este ejemplo, sigue las Java instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Java de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithSystemInstruction {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with text and system instruction input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentConfig config =
          GenerateContentConfig.builder()
              .systemInstruction(
                  Content.fromParts(
                      Part.fromText("You're a language translator."),
                      Part.fromText("Your mission is to translate text in English to French.")))
              .build();

      GenerateContentResponse response =
          client.models.generateContent(modelId, "Why is the sky blue?", config);

      System.out.print(response.text());
      // Example response:
      // Pourquoi le ciel est-il bleu ?
      return response.text();
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las Node.js instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Node.js de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const prompt = `
  User input: I like bagels.
  Answer:
  `;

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: prompt,
    config: {
      systemInstruction: [
        'You are a language translator.',
        'Your mission is to translate text in English to French.',
      ],
    },
  });

  console.log(response.text);

  return response.text;
}

Python

Antes de probar este ejemplo, sigue las Python instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Python de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

from google import genai
from google.genai.types import GenerateContentConfig, HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="Why is the sky blue?",
    config=GenerateContentConfig(
        system_instruction=[
            "You're a language translator.",
            "Your mission is to translate text in English to French.",
        ]
    ),
)
print(response.text)
# Example response:
# Pourquoi le ciel est-il bleu ?

Siguientes pasos

Para buscar y filtrar ejemplos de código de otros Google Cloud productos, consulta el Google Cloud navegador de ejemplos.