Predicción de texto por lotes con un modelo de Gemini mediante Google Cloud Storage

Realiza una predicción de texto por lotes con el modelo de Gemini y devuelve la ubicación de salida.

Investigar más

Para obtener documentación detallada que incluya este código de muestra, consulta lo siguiente:

Código de ejemplo

Python

Antes de probar este ejemplo, sigue las Python instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Python de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import time

from google import genai
from google.genai.types import CreateBatchJobConfig, JobState, HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
# TODO(developer): Update and un-comment below line
# output_uri = "gs://your-bucket/your-prefix"

# See the documentation: https://googleapis.github.io/python-genai/genai.html#genai.batches.Batches.create
job = client.batches.create(
    # To use a tuned model, set the model param to your tuned model using the following format:
    # model="projects/{PROJECT_ID}/locations/{LOCATION}/models/{MODEL_ID}
    model="gemini-2.5-flash",
    # Source link: https://storage.cloud.google.com/cloud-samples-data/batch/prompt_for_batch_gemini_predict.jsonl
    src="gs://cloud-samples-data/batch/prompt_for_batch_gemini_predict.jsonl",
    config=CreateBatchJobConfig(dest=output_uri),
)
print(f"Job name: {job.name}")
print(f"Job state: {job.state}")
# Example response:
# Job name: projects/%PROJECT_ID%/locations/us-central1/batchPredictionJobs/9876453210000000000
# Job state: JOB_STATE_PENDING

# See the documentation: https://googleapis.github.io/python-genai/genai.html#genai.types.BatchJob
completed_states = {
    JobState.JOB_STATE_SUCCEEDED,
    JobState.JOB_STATE_FAILED,
    JobState.JOB_STATE_CANCELLED,
    JobState.JOB_STATE_PAUSED,
}

while job.state not in completed_states:
    time.sleep(30)
    job = client.batches.get(name=job.name)
    print(f"Job state: {job.state}")
# Example response:
# Job state: JOB_STATE_PENDING
# Job state: JOB_STATE_RUNNING
# Job state: JOB_STATE_RUNNING
# ...
# Job state: JOB_STATE_SUCCEEDED

Siguientes pasos

Para buscar y filtrar ejemplos de código de otros Google Cloud productos, consulta el Google Cloud navegador de ejemplos.