自 2025 年 4 月 29 日起,Gemini 1.5 Pro 和 Gemini 1.5 Flash 模型將無法用於先前未使用這些模型的專案,包括新專案。詳情請參閱「
模型版本和生命週期」。
使用自訂設定微調 Gemini,以便用於進階用途
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
使用 Vertex AI 監督式微調功能和進階參數,調整生成式 AI 模型。
深入探索
如需包含這個程式碼範例的詳細說明文件,請參閱下列內容:
程式碼範例
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["難以理解","hardToUnderstand","thumb-down"],["資訊或程式碼範例有誤","incorrectInformationOrSampleCode","thumb-down"],["缺少我需要的資訊/範例","missingTheInformationSamplesINeed","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],[],[],[],null,["Tune a Generative AI model using Vertex AI Supervised Fine-tuning with advanced parameters.\n\nExplore further\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Tuning API](/vertex-ai/generative-ai/docs/model-reference/tuning)\n\nCode sample \n\nPython\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n import time\n\n import https://cloud.google.com/python/docs/reference/vertexai/latest/\n from vertexai.tuning import https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.tuning.sft.html\n\n # TODO(developer): Update and un-comment below line\n # PROJECT_ID = \"your-projecthttps://cloud.google.com/python/docs/reference/vertexai/latest/;\n vertexai.init(project=PROJECT_ID, location=\"us-central1\")\n\n # Initialize Vertex AI with your service account for BYOSA (Bring Your Own Service Account).\n # Uncomment the following and replace \"your-service-account\"\n # vertexai.init(service_account=\"your-service-account\")\n\n # Initialize Vertex AI with your CMEK (Customer-Managed Encryption Key).\n # Un-comment the following line and replace \"your-kms-key\"\n # vertexai.init(encryptiohttps://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.tuning.sft.htmlphttps://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.tuning.sft.htmly_name=\"your-kms-key\")\n\n sft_tuning_job = sft.train(\n source_model=\"gemini-2.0-flash-001\",\n # 1.5 and 2.0 models use the same JSONL format\n train_dataset=\"gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl\",\n # The following parameters are optional\n validation_dataset=\"gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_validation_data.jsonl\",\n tuned_model_display_name=\"tuned_gemini_2_0_flash\",\n # Advanced use only below. It is recommended to use auto-selection and leave them unset\n # epochs=4,\n # adapter_size=4,\n # learning_rate_multiplier=1.0,\n )\n\n # Polling for job completion\n while not sft_tuning_job.has_ended:\n time.sleep(60)\n sft_tuning_job.refresh()\n\n print(sft_tuning_job.tuned_model_name)\n print(sft_tuning_job.tuned_model_endpoint_name)\n print(sft_tuning_job.experiment)\n # Example response:\n # projects/123456789012/locations/us-cen\u003ctral1/models/1234567890@1\n # projects/123456789012/locations/us-central1/endpoints/1234567\u003e89012345\n # google.cloud.aiplatform.metadata.experiment_resources.Experiment object at 0x7b5b4ae07af0\n\nWhat's next\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]