Ajustar Gemini con configuraciones personalizadas para casos prácticos avanzados

Ajusta un modelo de IA generativa con el ajuste fino supervisado de Vertex AI y parámetros avanzados.

Investigar más

Para obtener documentación detallada que incluya este código de muestra, consulta lo siguiente:

Código de ejemplo

Python

Antes de probar este ejemplo, sigue las Python instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Python de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import time

import vertexai
from vertexai.tuning import sft

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

# Initialize Vertex AI with your service account for BYOSA (Bring Your Own Service Account).
# Uncomment the following and replace "your-service-account"
# vertexai.init(service_account="your-service-account")

# Initialize Vertex AI with your CMEK (Customer-Managed Encryption Key).
# Un-comment the following line and replace "your-kms-key"
# vertexai.init(encryption_spec_key_name="your-kms-key")

sft_tuning_job = sft.train(
    source_model="gemini-2.0-flash-001",
    # 1.5 and 2.0 models use the same JSONL format
    train_dataset="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl",
    # The following parameters are optional
    validation_dataset="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_validation_data.jsonl",
    tuned_model_display_name="tuned_gemini_2_0_flash",
    # Advanced use only below. It is recommended to use auto-selection and leave them unset
    # epochs=4,
    # adapter_size=4,
    # learning_rate_multiplier=1.0,
)

# Polling for job completion
while not sft_tuning_job.has_ended:
    time.sleep(60)
    sft_tuning_job.refresh()

print(sft_tuning_job.tuned_model_name)
print(sft_tuning_job.tuned_model_endpoint_name)
print(sft_tuning_job.experiment)
# Example response:
# projects/123456789012/locations/us-central1/models/1234567890@1
# projects/123456789012/locations/us-central1/endpoints/123456789012345
# <google.cloud.aiplatform.metadata.experiment_resources.Experiment object at 0x7b5b4ae07af0>

Siguientes pasos

Para buscar y filtrar ejemplos de código de otros Google Cloud productos, consulta el Google Cloud navegador de ejemplos.