Gerar conteúdos de texto de streaming com o modelo generativo

Este exemplo demonstra como usar modelos generativos para gerar textos em um formato de streaming.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Go

Antes de testar esse exemplo, siga as instruções de configuração para Go no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"errors"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
	"google.golang.org/api/iterator"
)

// generateContent shows how to	send a basic streaming text prompt, writing
// the response to the provided io.Writer.
func generateContent(w io.Writer, projectID, modelName string) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, "us-central1")
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	iter := model.GenerateContentStream(
		ctx,
		genai.Text("Write a story about a magic backpack."),
	)
	for {
		resp, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if len(resp.Candidates) == 0 || len(resp.Candidates[0].Content.Parts) == 0 {
			return errors.New("empty response from model")
		}
		if err != nil {
			return err
		}
		fmt.Fprint(w, "generated response: ")
		for _, c := range resp.Candidates {
			for _, p := range c.Content.Parts {
				fmt.Fprintf(w, "%s ", p)
			}
		}
	}
}

Java

Antes de testar essa amostra, siga as instruções de configuração para Java Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.generativeai.GenerativeModel;

public class StreamingQuestionAnswer {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    streamingQuestion(projectId, location, modelName);
  }

  // Ask a simple question and get the response via streaming.
  public static void streamingQuestion(String projectId, String location, String modelName)
      throws Exception {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      // Stream the result.
      model.generateContentStream("Write a story about a magic backpack.")
          .stream()
          .forEach(System.out::println);

      System.out.println("Streaming complete.");
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
const PROJECT_ID = process.env.CAIP_PROJECT_ID;
const LOCATION = process.env.LOCATION;
const MODEL = 'gemini-1.5-flash-001';

async function generateContent() {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: PROJECT_ID, location: LOCATION});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: MODEL,
  });

  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            text: 'Write a story about a magic backpack.',
          },
        ],
      },
    ],
  };

  console.log(JSON.stringify(request));

  const result = await generativeModel.generateContentStream(request);
  for await (const item of result.stream) {
    console.log(item.candidates[0].content.parts[0].text);
  }
}

Python

Antes de testar essa amostra, siga as instruções de configuração para Python Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.generative_models import GenerativeModel

# TODO(developer): Update Project ID
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")
responses = model.generate_content(
    "Write a story about a magic backpack.", stream=True
)

for response in responses:
    print(response.text)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.