Restituire la risposta dell'LLM

Questo esempio mostra come eseguire una query di recupero per ottenere una risposta dal modello LLM.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Python.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.


from vertexai import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# corpus_name = "projects/[PROJECT_ID]/locations/us-central1/ragCorpora/[rag_corpus_id]"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

response = rag.retrieval_query(
    rag_resources=[
        rag.RagResource(
            rag_corpus=corpus_name,
            # Optional: supply IDs from `rag.list_files()`.
            # rag_file_ids=["rag-file-1", "rag-file-2", ...],
        )
    ],
    text="Hello World!",
    rag_retrieval_config=rag.RagRetrievalConfig(
        top_k=10,
        filter=rag.utils.resources.Filter(vector_distance_threshold=0.5),
    ),
)
print(response)
# Example response:
# contexts {
#   contexts {
#     source_uri: "gs://your-bucket-name/file.txt"
#     text: "....
#   ....

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .