Mulai 29 April 2025, model Gemini 1.5 Pro dan Gemini 1.5 Flash tidak tersedia di project yang belum pernah menggunakan model ini, termasuk project baru. Untuk mengetahui detailnya, lihat
Versi dan siklus proses model.
Gunakan panduan memulai untuk memahami RAG
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Panduan memulai ini menunjukkan cara menggunakan RAG API.
Mempelajari lebih lanjut
Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:
Contoh kode
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],[],[],[],null,["# Use the quickstart to get familiar with RAG\n\nThis quickstart demonstrates how to use the RAG API.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [RAG quickstart for Python](/vertex-ai/generative-ai/docs/rag-engine/rag-quickstart)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from vertexai import rag\n from vertexai.generative_models import https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.GenerativeModel.html, https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Tool.html\n import https://cloud.google.com/python/docs/reference/vertexai/latest/\n\n # Create a RAG Corpus, Import Files, and Generate a response\n\n # TODO(developer): Update and un-comment below lines\n # PROJECT_ID = \"your-project-id\"\n # display_name = \"test_corpus\"\n # paths = [\"https://drive.google.com/file/d/123\", \"gs://my_bucket/my_files_dir\"] # Supports Google Cloud Storage and Google Drive Links\n\n # Initialize Vertex AI API once per session\n https://cloud.google.com/python/docs/reference/vertexai/latest/.init(project=PROJECT_ID, location=\"us-central1\")\n\n # Create RagCorpus\n # Configure embedding model, for example \"text-embedding-005\".\n embedding_model_config = rag.RagEmbeddingModelConfig(\n vertex_prediction_endpoint=rag.VertexPredictionEndpoint(\n publisher_model=\"publishers/google/models/text-embedding-005\"\n )\n )\n\n rag_corpus = rag.create_corpus(\n display_name=display_name,\n backend_config=rag.RagVectorDbConfig(\n rag_embedding_model_config=embedding_model_config\n ),\n )\n\n # Import Files to the RagCorpus\n rag.import_files(\n rag_corpus.name,\n paths,\n # Optional\n transformation_config=rag.TransformationConfig(\n chunking_config=rag.ChunkingConfig(\n chunk_size=512,\n chunk_overlap=100,\n ),\n ),\n max_embedding_requests_per_min=1000, # Optional\n )\n\n # Direct context retrieval\n rag_retrieval_config = rag.RagRetrievalConfig(\n top_k=3, # Optional\n filter=rag.Filter(vector_distance_threshold=0.5), # Optional\n )\n response = rag.retrieval_query(\n rag_resources=[\n rag.RagResource(\n rag_corpus=rag_corpus.name,\n # Optional: supply IDs from `rag.list_files()`.\n # rag_file_ids=[\"rag-file-1\", \"rag-file-2\", ...],\n )\n ],\n text=\"What is RAG and why it is helpful?\",\n rag_retrieval_config=rag_retrieval_config,\n )\n print(response)\n\n # Enhance generation\n # Create a RAG retrieval tool\n rag_retrieval_tool = https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Tool.html.from_retrieval(\n retrieval=rag.Retrieval(\n source=rag.VertexRagStore(\n rag_resources=[\n rag.RagResource(\n rag_corpus=rag_corpus.name, # Currently only 1 corpus is allowed.\n # Optional: supply IDs from `rag.list_files()`.\n # rag_file_ids=[\"rag-file-1\", \"rag-file-2\", ...],\n )\n ],\n rag_retrieval_config=rag_retrieval_config,\n ),\n )\n )\n\n # Create a Gemini model instance\n rag_model = GenerativeModel(\n model_name=\"gemini-2.0-flash-001\", tools=[rag_retrieval_tool]\n )\n\n # Generate response\n response = rag_model.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.GenerativeModel.html#vertexai_preview_generative_models_GenerativeModel_generate_content(\"What is RAG and why it is helpful?\")\n print(response.text)\n # Example response:\n # RAG stands for Retrieval-Augmented Generation.\n # It's a technique used in AI to enhance the quality of responses\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]