Genera respuestas con el archivo RAG
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En este ejemplo, se muestra cómo generar el contenido con un archivo RAG.
Explora más
Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:
Muestra de código
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],[],[],[],null,["# Generate responses using the RAG file\n\nThis sample demonstrates how to generate the content using a RAG file.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [RAG Engine API](/vertex-ai/generative-ai/docs/model-reference/rag-api-v1)\n- [Use a Weaviate database with Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/rag-engine/use-weaviate-db)\n- [Use Vertex AI Feature Store in Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/rag-engine/use-feature-store-with-rag)\n- [Use Vertex AI Search as a retrieval backend using Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/rag-engine/use-vertexai-search)\n- [Use Vertex AI Vector Search with Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/rag-engine/use-vertexai-vector-search)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n from vertexai import rag\n from vertexai.generative_models import https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.GenerativeModel.html, https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Tool.html\n import https://cloud.google.com/python/docs/reference/vertexai/latest/\n\n # TODO(developer): Update and un-comment below lines\n # PROJECT_ID = \"your-project-id\"\n # corpus_name = \"projects/{PROJECT_ID}/locations/us-central1/ragCorpora/{rag_corpus_id}\"\n\n # Initialize Vertex AI API once per session\n https://cloud.google.com/python/docs/reference/vertexai/latest/.init(project=PROJECT_ID, location=\"us-central1\")\n\n rag_retrieval_tool = https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Tool.html.from_retrieval(\n retrieval=rag.Retrieval(\n source=rag.VertexRagStore(\n rag_resources=[\n rag.RagResource(\n rag_corpus=corpus_name,\n # Optional: supply IDs from `rag.list_files()`.\n # rag_file_ids=[\"rag-file-1\", \"rag-file-2\", ...],\n )\n ],\n rag_retrieval_config=rag.RagRetrievalConfig(\n top_k=10,\n filter=rag.utils.resources.Filter(vector_distance_threshold=0.5),\n ),\n ),\n )\n )\n\n rag_model = GenerativeModel(\n model_name=\"gemini-2.0-flash-001\", tools=[rag_retrieval_tool]\n )\n response = rag_model.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.GenerativeModel.html#vertexai_preview_generative_models_GenerativeModel_generate_content(\"Why is the sky blue?\")\n print(response.text)\n # Example response:\n # The sky appears blue due to a phenomenon called Rayleigh scattering.\n # Sunlight, which contains all colors of the rainbow, is scattered\n # by the tiny particles in the Earth's atmosphere....\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]