Mulai 29 April 2025, model Gemini 1.5 Pro dan Gemini 1.5 Flash tidak tersedia di project yang belum pernah menggunakan model ini, termasuk project baru. Untuk mengetahui detailnya, lihat
Versi dan siklus proses model.
Membuat embedding untuk input multimodal
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Contoh kode ini menunjukkan cara menggunakan model multimodal untuk membuat embedding untuk input teks dan gambar.
Mempelajari lebih lanjut
Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:
Contoh kode
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],[],[],[],null,["# Generate embeddings for multimodal input\n\nThis code sample shows how to use the multimodal model to generate embeddings for text and image inputs.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Get multimodal embeddings](/vertex-ai/generative-ai/docs/embeddings/get-multimodal-embeddings)\n- [Multimodal embeddings API](/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api)\n\nCode sample\n-----------\n\n### Go\n\n\nBefore trying this sample, follow the Go setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Go API\nreference documentation](/go/docs/reference/cloud.google.com/go/aiplatform/latest/apiv1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import (\n \t\"context\"\n \t\"encoding/json\"\n \t\"fmt\"\n \t\"io\"\n\n \taiplatform \"cloud.google.com/go/aiplatform/apiv1beta1\"\n \taiplatformpb \"cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb\"\n \t\"google.golang.org/api/option\"\n \t\"google.golang.org/protobuf/encoding/protojson\"\n \t\"google.golang.org/protobuf/types/known/structpb\"\n )\n\n // generateForTextAndImage shows how to use the multimodal model to generate embeddings for\n // text and image inputs.\n func generateForTextAndImage(w io.Writer, project, location string) error {\n \t// location = \"us-central1\"\n \tctx := context.Background()\n \tapiEndpoint := fmt.Sprintf(\"%s-aiplatform.googleapis.com:443\", location)\n \tclient, err := aiplatform.https://cloud.google.com/go/docs/reference/cloud.google.com/go/aiplatform/latest/apiv1beta1.html#cloud_google_com_go_aiplatform_apiv1beta1_PredictionClient_NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to construct API client: %w\", err)\n \t}\n \tdefer client.Close()\n\n \tmodel := \"multimodalembedding@001\"\n \tendpoint := fmt.Sprintf(\"projects/%s/locations/%s/publishers/google/models/%s\", project, location, model)\n\n \t// This is the input to the model's prediction call. For schema, see:\n \t// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#request_body\n \tinstance, err := structpb.NewValue(map[string]any{\n \t\t\"image\": map[string]any{\n \t\t\t// Image input can be provided either as a Google Cloud Storage URI or as\n \t\t\t// base64-encoded bytes using the \"bytesBase64Encoded\" field.\n \t\t\t\"gcsUri\": \"gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png\",\n \t\t},\n \t\t\"text\": \"Colosseum\",\n \t})\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to construct request payload: %w\", err)\n \t}\n\n \treq := &aiplatformpb.PredictRequest{\n \t\tEndpoint: endpoint,\n \t\t// The model supports only 1 instance per request.\n \t\tInstances: []*structpb.Value{instance},\n \t}\n\n \tresp, err := client.Predict(ctx, req)\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to generate embeddings: %w\", err)\n \t}\n\n \tinstanceEmbeddingsJson, err := protojson.Marshal(resp.GetPredictions()[0])\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to convert protobuf value to JSON: %w\", err)\n \t}\n \t// For response schema, see:\n \t// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#response-body\n \tvar instanceEmbeddings struct {\n \t\tImageEmbeddings []float32 `json:\"imageEmbedding\"`\n \t\tTextEmbeddings []float32 `json:\"textEmbedding\"`\n \t}\n \tif err := json.Unmarshal(instanceEmbeddingsJson, &instanceEmbeddings); err != nil {\n \t\treturn fmt.Errorf(\"failed to unmarshal JSON: %w\", err)\n \t}\n\n \timageEmbedding := instanceEmbeddings.ImageEmbeddings\n \ttextEmbedding := instanceEmbeddings.TextEmbeddings\n\n \tfmt.Fprintf(w, \"Text embedding (length=%d): %v\\n\", len(textEmbedding), textEmbedding)\n \tfmt.Fprintf(w, \"Image embedding (length=%d): %v\\n\", len(imageEmbedding), imageEmbedding)\n \t// Example response:\n \t// Text embedding (length=1408): [0.0023026613 0.027898183 -0.011858357 ... ]\n \t// Image embedding (length=1408): [-0.012314269 0.07271844 0.00020170923 ... ]\n\n \treturn nil\n }\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import https://cloud.google.com/python/docs/reference/vertexai/latest/\n from vertexai.vision_models import https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Image.html, https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.vision_models.MultiModalEmbeddingModel.html\n\n # TODO(developer): Update & uncomment line below\n # PROJECT_ID = \"your-project-id\"\n https://cloud.google.com/python/docs/reference/vertexai/latest/.init(project=PROJECT_ID, location=\"us-central1\")\n\n model = https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.vision_models.MultiModalEmbeddingModel.html.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.vision_models.MultiModalEmbeddingModel.html#vertexai_preview_vision_models_MultiModalEmbeddingModel_from_pretrained(\"multimodalembedding@001\")\n image = https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Image.html.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.generative_models.Image.html#vertexai_preview_generative_models_Image_load_from_file(\n \"gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png\"\n )\n\n embeddings = model.https://cloud.google.com/python/docs/reference/vertexai/latest/vertexai.preview.vision_models.MultiModalEmbeddingModel.html#vertexai_preview_vision_models_MultiModalEmbeddingModel_get_embeddings(\n image=image,\n contextual_text=\"Colosseum\",\n dimension=1408,\n )\n print(f\"Image Embedding: {embeddings.image_embedding}\")\n print(f\"Text Embedding: {embeddings.text_embedding}\")\n # Example response:\n # Image Embedding: [-0.0123147098, 0.0727171078, ...]\n # Text Embedding: [0.00230263756, 0.0278981831, ...]\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]