画像、動画、テキストのエンベディングを生成する

このコードサンプルは、マルチモーダル モデルを使用して画像データ、テキストデータ、動画データのエンベディングを生成する方法を示しています。

もっと見る

このコードサンプルを含む詳細なドキュメントについては、以下をご覧ください。

コードサンプル

Go

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Go の設定手順を完了してください。 詳細については、Vertex AI Go API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import (
	"context"
	"encoding/json"
	"fmt"
	"io"
	"time"

	aiplatform "cloud.google.com/go/aiplatform/apiv1beta1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb"
	"google.golang.org/api/option"
	"google.golang.org/protobuf/encoding/protojson"
	"google.golang.org/protobuf/types/known/structpb"
)

// generateForImageTextAndVideo shows how to use the multimodal model to generate embeddings for
// image, text and video data.
func generateForImageTextAndVideo(w io.Writer, project, location string) error {
	// location = "us-central1"

	// The default context timeout may be not enough to process a video input.
	ctx, cancel := context.WithTimeout(context.Background(), 15*time.Second)
	defer cancel()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("failed to construct API client: %w", err)
	}
	defer client.Close()

	model := "multimodalembedding@001"
	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)

	// This is the input to the model's prediction call. For schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#request_body
	instance, err := structpb.NewValue(map[string]any{
		"text": "Domestic cats in natural conditions",
		"image": map[string]any{
			// Image and video inputs can be provided either as a Google Cloud Storage URI or as
			// base64-encoded bytes using the "bytesBase64Encoded" field.
			"gcsUri": "gs://cloud-samples-data/generative-ai/image/320px-Felis_catus-cat_on_snow.jpg",
		},
		"video": map[string]any{
			"gcsUri": "gs://cloud-samples-data/video/cat.mp4",
		},
	})
	if err != nil {
		return fmt.Errorf("failed to construct request payload: %w", err)
	}

	req := &aiplatformpb.PredictRequest{
		Endpoint: endpoint,
		// The model supports only 1 instance per request.
		Instances: []*structpb.Value{instance},
	}

	resp, err := client.Predict(ctx, req)
	if err != nil {
		return fmt.Errorf("failed to generate embeddings: %w", err)
	}

	instanceEmbeddingsJson, err := protojson.Marshal(resp.GetPredictions()[0])
	if err != nil {
		return fmt.Errorf("failed to convert protobuf value to JSON: %w", err)
	}
	// For response schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#response-body
	var instanceEmbeddings struct {
		ImageEmbeddings []float32 `json:"imageEmbedding"`
		TextEmbeddings  []float32 `json:"textEmbedding"`
		VideoEmbeddings []struct {
			Embedding      []float32 `json:"embedding"`
			StartOffsetSec float64   `json:"startOffsetSec"`
			EndOffsetSec   float64   `json:"endOffsetSec"`
		} `json:"videoEmbeddings"`
	}
	if err := json.Unmarshal(instanceEmbeddingsJson, &instanceEmbeddings); err != nil {
		return fmt.Errorf("failed to unmarshal JSON: %w", err)
	}

	imageEmbedding := instanceEmbeddings.ImageEmbeddings
	textEmbedding := instanceEmbeddings.TextEmbeddings
	// Get the embedding for our single video segment (`.videoEmbeddings` object has one entry per
	// each processed segment).
	videoEmbedding := instanceEmbeddings.VideoEmbeddings[0].Embedding

	fmt.Fprintf(w, "Image embedding (length=%d): %v\n", len(imageEmbedding), imageEmbedding)
	fmt.Fprintf(w, "Text embedding (length=%d): %v\n", len(textEmbedding), textEmbedding)
	fmt.Fprintf(w, "Video embedding (length=%d): %v\n", len(videoEmbedding), videoEmbedding)
	// Example response:
	// Image embedding (length=1408): [-0.01558477 0.0258355 0.016342038 ... ]
	// Text embedding (length=1408): [-0.005894961 0.008349559 0.015355394 ... ]
	// Video embedding (length=1408): [-0.018867437 0.013997682 0.0012682161 ... ]

	return nil
}

Python

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Python の設定手順を完了してください。詳細については、Vertex AI Python API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import vertexai

from vertexai.vision_models import Image, MultiModalEmbeddingModel, Video
from vertexai.vision_models import VideoSegmentConfig

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")

image = Image.load_from_file(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"
)
video = Video.load_from_file(
    "gs://cloud-samples-data/vertex-ai-vision/highway_vehicles.mp4"
)

embeddings = model.get_embeddings(
    image=image,
    video=video,
    video_segment_config=VideoSegmentConfig(end_offset_sec=1),
    contextual_text="Cars on Highway",
)

print(f"Image Embedding: {embeddings.image_embedding}")

# Video Embeddings are segmented based on the video_segment_config.
print("Video Embeddings:")
for video_embedding in embeddings.video_embeddings:
    print(
        f"Video Segment: {video_embedding.start_offset_sec} - {video_embedding.end_offset_sec}"
    )
    print(f"Embedding: {video_embedding.embedding}")

print(f"Text Embedding: {embeddings.text_embedding}")
# Example response:
# Image Embedding: [-0.0123144267, 0.0727186054, 0.000201397663, ...]
# Video Embeddings:
# Video Segment: 0.0 - 1.0
# Embedding: [-0.0206376351, 0.0345234685, ...]
# Text Embedding: [-0.0207006838, -0.00251058186, ...]

次のステップ

他の Google Cloud プロダクトに関連するコードサンプルを検索およびフィルタするには、Google Cloud サンプル ブラウザをご覧ください。