Compter les jetons dans une requête

Cet exemple montre comment compter le nombre de jetons dans une requête à l'aide de l'API Gemini Vertex AI.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI C#.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class GetTokenCount
{
    public async Task<int> CountTokens(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001"
    )
    {
        var client = new LlmUtilityServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        var request = new CountTokensRequest
        {
            Endpoint = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts = { new Part { Text = "Why is the sky blue?" } }
                }
            }
        };

        var response = await client.CountTokensAsync(request);
        int tokenCount = response.TotalTokens;
        Console.WriteLine($"There are {tokenCount} tokens in the prompt.");
        return tokenCount;
    }
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Go.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// countTokens returns the number of tokens for this prompt.
func countTokens(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"

	ctx := context.Background()
	prompt := genai.Text("Why is the sky blue?")

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	resp, err := model.CountTokens(ctx, prompt)
	if err != nil {
		return err
	}

	fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp.TotalTokens)

	resp2, err := model.GenerateContent(ctx, prompt)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp2.UsageMetadata.PromptTokenCount)
	fmt.Fprintf(w, "Number of tokens for the candidates: %d\n", resp2.UsageMetadata.CandidatesTokenCount)
	fmt.Fprintf(w, "Total number of tokens: %d\n", resp2.UsageMetadata.TotalTokenCount)

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.CountTokensResponse;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import java.io.IOException;

public class GetTokenCount {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    getTokenCount(projectId, location, modelName);
  }

  // Gets the number of tokens for the prompt and the model's response.
  public static int getTokenCount(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      String textPrompt = "Why is the sky blue?";
      CountTokensResponse response = model.countTokens(textPrompt);

      int promptTokenCount = response.getTotalTokens();
      int promptCharCount = response.getTotalBillableCharacters();

      System.out.println("Prompt token Count: " + promptTokenCount);
      System.out.println("Prompt billable character count: " + promptCharCount);

      GenerateContentResponse contentResponse = model.generateContent(textPrompt);

      int tokenCount = contentResponse.getUsageMetadata().getPromptTokenCount();
      int candidateTokenCount = contentResponse.getUsageMetadata().getCandidatesTokenCount();
      int totalTokenCount = contentResponse.getUsageMetadata().getTotalTokenCount();

      System.out.println("Prompt token Count: " + tokenCount);
      System.out.println("Candidate Token Count: " + candidateTokenCount);
      System.out.println("Total token Count: " + totalTokenCount);

      return promptTokenCount;
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function countTokens(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: model,
  });

  const req = {
    contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
  };

  // Prompt tokens count
  const countTokensResp = await generativeModel.countTokens(req);
  console.log('Prompt tokens count: ', countTokensResp);

  // Send text to gemini
  const result = await generativeModel.generateContent(req);

  // Response tokens count
  const usageMetadata = result.response.usageMetadata;
  console.log('Response tokens count: ', usageMetadata);
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import vertexai
from vertexai.generative_models import GenerativeModel

# TODO (developer): update project_id
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

prompt = "Why is the sky blue?"
# Prompt tokens count
response = model.count_tokens(prompt)
print(f"Prompt Token Count: {response.total_tokens}")
print(f"Prompt Character Count: {response.total_billable_characters}")

# Send text to Gemini
response = model.generate_content(prompt)

# Response tokens count
usage_metadata = response.usage_metadata
print(f"Prompt Token Count: {usage_metadata.prompt_token_count}")
print(f"Candidates Token Count: {usage_metadata.candidates_token_count}")
print(f"Total Token Count: {usage_metadata.total_token_count}")

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.