使用安全設定從圖片生成文字

這個範例示範如何使用 Gemini 模型和安全設定,從圖片生成文字。

程式碼範例

C#

在試用這個範例之前,請先按照C#使用用戶端程式庫的 Vertex AI 快速入門中的操作說明進行設定。 詳情請參閱 Vertex AI C# API 參考說明文件

如要向 Vertex AI 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。


using Google.Api.Gax.Grpc;
using Google.Cloud.AIPlatform.V1;
using System.Text;
using System.Threading.Tasks;
using static Google.Cloud.AIPlatform.V1.SafetySetting.Types;

public class WithSafetySettings
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-2.0-flash-001"
    )
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();


        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = "Hello!" }
                    }
                }
            },
            SafetySettings =
            {
                new SafetySetting
                {
                    Category = HarmCategory.HateSpeech,
                    Threshold = HarmBlockThreshold.BlockLowAndAbove
                },
                new SafetySetting
                {
                    Category = HarmCategory.DangerousContent,
                    Threshold = HarmBlockThreshold.BlockMediumAndAbove
                }
            }
        };

        using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);

        StringBuilder fullText = new();

        AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
        await foreach (GenerateContentResponse responseItem in responseStream)
        {
            // Check if the content has been blocked for safety reasons.
            bool blockForSafetyReason = responseItem.Candidates[0].FinishReason == Candidate.Types.FinishReason.Safety;
            if (blockForSafetyReason)
            {
                fullText.Append("Blocked for safety reasons");
            }
            else
            {
                fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
            }
        }

        return fullText.ToString();
    }
}

Node.js

在試用這個範例之前,請先按照Node.js使用用戶端程式庫的 Vertex AI 快速入門中的操作說明進行設定。 詳情請參閱 Vertex AI Node.js API 參考說明文件

如要向 Vertex AI 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

const {
  VertexAI,
  HarmCategory,
  HarmBlockThreshold,
} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
const PROJECT_ID = process.env.CAIP_PROJECT_ID;
const LOCATION = 'us-central1';
const MODEL = 'gemini-2.0-flash-001';

async function setSafetySettings() {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: PROJECT_ID, location: LOCATION});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: MODEL,
    // The following parameters are optional
    // They can also be passed to individual content generation requests
    safetySettings: [
      {
        category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
        threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
      },
      {
        category: HarmCategory.HARM_CATEGORY_HARASSMENT,
        threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
      },
    ],
  });

  const request = {
    contents: [{role: 'user', parts: [{text: 'Tell me something dangerous.'}]}],
  };

  console.log('Prompt:');
  console.log(request.contents[0].parts[0].text);
  console.log('Streaming Response Text:');

  // Create the response stream
  const responseStream = await generativeModel.generateContentStream(request);

  // Log the text response as it streams
  for await (const item of responseStream.stream) {
    if (item.candidates[0].finishReason === 'SAFETY') {
      console.log('This response stream terminated due to safety concerns.');
      break;
    } else {
      process.stdout.write(item.candidates[0].content.parts[0].text);
    }
  }
  console.log('This response stream terminated due to safety concerns.');
}

後續步驟

如要搜尋及篩選其他 Google Cloud 產品的程式碼範例,請參閱Google Cloud 範例瀏覽器