Respostas de modelo do Ground Gemini para a Pesquisa Google

Use isso para fundamentar a saída do modelo do Gemini nos resultados da Pesquisa Google

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

C#

Antes de testar esse exemplo, siga as instruções de configuração para C# no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para C#.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class GroundingWebSample
{
    public async Task<string> GenerateTextWithGroundingWeb(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001"
    )
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();


        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            GenerationConfig = new GenerationConfig
            {
                Temperature = 0.0f
            },
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts = { new Part { Text = "When is the next total solar eclipse in US?" } }
                }
            },
            Tools =
            {
                new Tool
                {
                    GoogleSearchRetrieval = new GoogleSearchRetrieval()
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Python

Antes de testar essa amostra, siga as instruções de configuração para Python Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.generative_models import (
    GenerationConfig,
    GenerativeModel,
    Tool,
    grounding,
)

# TODO(developer): Update and un-comment below line
# project_id = "PROJECT_ID"

vertexai.init(project=project_id, location="us-central1")

model = GenerativeModel(model_name="gemini-1.5-flash-001")

# Use Google Search for grounding
tool = Tool.from_google_search_retrieval(grounding.GoogleSearchRetrieval())

prompt = "When is the next total solar eclipse in US?"
response = model.generate_content(
    prompt,
    tools=[tool],
    generation_config=GenerationConfig(
        temperature=0.0,
    ),
)

print(response)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.