Baseie o Gemini em um repositório de dados da Vertex AI para Pesquisa

Use isso para embasar a saída do Gemini com seus próprios dados armazenados em um repositório da Vertex AI para Pesquisa.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

C#

Antes de testar esse exemplo, siga as instruções de configuração para C# no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para C#.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class GroundingVertexAiSearchSample
{
    public async Task<string> GenerateTextWithVertexAiSearch(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.0-pro-002",
        string dataStoreLocation = "global",
        string dataStoreId = "your-datastore-id")
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            GenerationConfig = new GenerationConfig
            {
                Temperature = 0.0f
            },
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts = { new Part { Text = "How do I make an appointment to renew my driver's license?" } }
                }
            },
            Tools =
            {
                new Tool
                {
                    Retrieval = new Retrieval
                    {
                        VertexAiSearch = new VertexAISearch
                        {
                            Datastore = $"projects/{projectId}/locations/{dataStoreLocation}/collections/default_collection/dataStores/{dataStoreId}"
                        }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Python

Antes de testar essa amostra, siga as instruções de configuração para Python Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.preview.generative_models import grounding
from vertexai.generative_models import GenerationConfig, GenerativeModel, Tool

# TODO(developer): Update and un-comment below line
# project_id = "PROJECT_ID"

vertexai.init(project=project_id, location="us-central1")

model = GenerativeModel(model_name="gemini-1.0-pro-002")

# Use Vertex AI Search data store
# Format: projects/{project_id}/locations/{location}/collections/default_collection/dataStores/{data_store_id}
tool = Tool.from_retrieval(
    grounding.Retrieval(grounding.VertexAISearch(datastore=data_store_path))
)

prompt = "How do I make an appointment to renew my driver's license?"
response = model.generate_content(
    prompt,
    tools=[tool],
    generation_config=GenerationConfig(
        temperature=0.0,
    ),
)

print(response)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.