Coba model Gemini 1.5, model multimodal terbaru di Vertex AI, dan lihat model yang dapat Anda bangun dengan jendela konteks hingga 2 juta token.
Coba model Gemini 1.5, model multimodal terbaru di Vertex AI, dan lihat model yang dapat Anda bangun dengan jendela konteks hingga 2 juta token.
Membuat respons teks menggunakan Gemini API dengan panggilan fungsi eksternal dalam skenario chat
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Buat respons teks menggunakan Gemini API dengan panggilan fungsi eksternal. Contoh ini menunjukkan skenario chat dengan dua fungsi dan dua perintah berurutan.
Jelajahi lebih lanjut
Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:
Contoh kode
Python
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di
Panduan memulai Vertex AI menggunakan
library klien.
Untuk mengetahui informasi selengkapnya, lihat
Dokumentasi referensi API Python Vertex AI.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi.
Untuk mengetahui informasi selengkapnya, baca
Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
import vertexai
from vertexai.generative_models import (
FunctionDeclaration,
GenerativeModel,
Part,
Tool,
)
def generate_function_call_chat(project_id: str, location: str) -> tuple:
prompts = []
summaries = []
# Initialize Vertex AI
vertexai.init(project=project_id, location=location)
# Specify a function declaration and parameters for an API request
get_product_info_func = FunctionDeclaration(
name="get_product_sku",
description="Get the SKU for a product",
# Function parameters are specified in OpenAPI JSON schema format
parameters={
"type": "object",
"properties": {
"product_name": {"type": "string", "description": "Product name"}
},
},
)
# Specify another function declaration and parameters for an API request
get_store_location_func = FunctionDeclaration(
name="get_store_location",
description="Get the location of the closest store",
# Function parameters are specified in OpenAPI JSON schema format
parameters={
"type": "object",
"properties": {"location": {"type": "string", "description": "Location"}},
},
)
# Define a tool that includes the above functions
retail_tool = Tool(
function_declarations=[
get_product_info_func,
get_store_location_func,
],
)
# Initialize Gemini model
model = GenerativeModel(
"gemini-1.0-pro", generation_config={"temperature": 0}, tools=[retail_tool]
)
# Start a chat session
chat = model.start_chat()
# Send a prompt for the first conversation turn that should invoke the get_product_sku function
prompt = "Do you have the Pixel 8 Pro in stock?"
response = chat.send_message(prompt)
prompts.append(prompt)
# Check the function name that the model responded with, and make an API call to an external system
if response.candidates[0].content.parts[0].function_call.name == "get_product_sku":
# Extract the arguments to use in your API call
product_name = (
response.candidates[0].content.parts[0].function_call.args["product_name"]
)
product_name
# Here you can use your preferred method to make an API request to retrieve the product SKU, as in:
# api_response = requests.post(product_api_url, data={"product_name": product_name})
# In this example, we'll use synthetic data to simulate a response payload from an external API
api_response = {"sku": "GA04834-US", "in_stock": "yes"}
# Return the API response to Gemini so it can generate a model response or request another function call
response = chat.send_message(
Part.from_function_response(
name="get_product_sku",
response={
"content": api_response,
},
),
)
# Extract the text from the summary response
summary = response.candidates[0].content.parts[0].text
summaries.append(summary)
# Send a prompt for the second conversation turn that should invoke the get_store_location function
prompt = "Is there a store in Mountain View, CA that I can visit to try it out?"
response = chat.send_message(prompt)
prompts.append(prompt)
# Check the function name that the model responded with, and make an API call to an external system
if (
response.candidates[0].content.parts[0].function_call.name
== "get_store_location"
):
# Extract the arguments to use in your API call
location = (
response.candidates[0].content.parts[0].function_call.args["location"]
)
location
# Here you can use your preferred method to make an API request to retrieve store location closest to the user, as in:
# api_response = requests.post(store_api_url, data={"location": location})
# In this example, we'll use synthetic data to simulate a response payload from an external API
api_response = {"store": "2000 N Shoreline Blvd, Mountain View, CA 94043, US"}
# Return the API response to Gemini so it can generate a model response or request another function call
response = chat.send_message(
Part.from_function_response(
name="get_store_location",
response={
"content": api_response,
},
),
)
# Extract the text from the summary response
summary = response.candidates[0].content.parts[0].text
summaries.append(summary)
return prompts, summaries
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],[],[],[]]