Chamada de função com o modelo Gemini AI

O exemplo de código demonstra como usar os modelos generativos da Vertex AI para fazer chamadas de funções.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai
from vertexai.preview.generative_models import (
    FunctionDeclaration,
    GenerativeModel,
    Tool,
    ToolConfig,
)

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"

# Initialize Vertex AI
vertexai.init(project=project_id, location="us-central1")

# Specify a function declaration and parameters for an API request
get_product_sku_func = FunctionDeclaration(
    name="get_product_sku",
    description="Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc",
    # Function parameters are specified in OpenAPI JSON schema format
    parameters={
        "type": "object",
        "properties": {
            "product_name": {"type": "string", "description": "Product name"}
        },
    },
)

# Specify another function declaration and parameters for an API request
get_store_location_func = FunctionDeclaration(
    name="get_store_location",
    description="Get the location of the closest store",
    # Function parameters are specified in OpenAPI JSON schema format
    parameters={
        "type": "object",
        "properties": {"location": {"type": "string", "description": "Location"}},
    },
)

# Define a tool that includes the above functions
retail_tool = Tool(
    function_declarations=[
        get_product_sku_func,
        get_store_location_func,
    ],
)

# Define a tool config for the above functions
retail_tool_config = ToolConfig(
    function_calling_config=ToolConfig.FunctionCallingConfig(
        # ANY mode forces the model to predict a function call
        mode=ToolConfig.FunctionCallingConfig.Mode.ANY,
        # List of functions that can be returned when the mode is ANY.
        # If the list is empty, any declared function can be returned.
        allowed_function_names=["get_product_sku"],
    )
)

model = GenerativeModel(
    model_name="gemini-1.5-flash-001",
    tools=[retail_tool],
    tool_config=retail_tool_config,
)
response = model.generate_content(
    "Do you have the Pixel 8 Pro 128GB in stock?",
)

print(response.text)
print(response.candidates[0].function_calls)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.