Criar um cache de contexto

Crie um cache de contexto para reduzir os custos com solicitações repetidas que contêm a mesma entrada de contagem de tokens.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

C#

Antes de testar esse exemplo, siga as instruções de configuração para C# no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para C#.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Cloud.AIPlatform.V1Beta1;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Threading.Tasks;

public class CreateContextCache
{
    public async Task<CachedContentName> Create(string projectId)
    {
        var client = await new GenAiCacheServiceClientBuilder
        {
            Endpoint = "us-central1-aiplatform.googleapis.com"
        }.BuildAsync();

        var request = new CreateCachedContentRequest
        {
            Parent = $"projects/{projectId}/locations/us-central1",
            CachedContent = new CachedContent
            {
                Model = $"projects/{projectId}/locations/us-central1/publishers/google/models/gemini-1.5-pro-001",
                SystemInstruction = new Content
                {
                    Parts =
                    {
                        new Part { Text = "You are an expert researcher. You always stick to the facts in the sources provided and"
                            + " never make up new facts. Now look at these research papers, and answer the following questions." }
                    }
                },
                Contents =
                {
                    new Content
                    {
                        Role = "USER",
                        Parts =
                        {
                            new Part { FileData = new() { MimeType = "application/pdf", FileUri = "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf" } },
                            new Part { FileData = new() { MimeType = "application/pdf", FileUri = "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf" } }
                        }
                    }
                },
                Ttl = Duration.FromTimeSpan(TimeSpan.FromMinutes(60))
            }
        };

        var cachedContent = await client.CreateCachedContentAsync(request);
        Console.WriteLine($"Created cache: {cachedContent.CachedContentName}");
        return cachedContent.CachedContentName;
    }
}

Go

Antes de testar esse exemplo, siga as instruções de configuração para Go no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"
	"time"

	"cloud.google.com/go/vertexai/genai"
)

// createContextCache shows how to create a cached content, and returns its name.
func createContextCache(w io.Writer, projectID, location, modelName string) (string, error) {
	// location := "us-central1"
	// modelName := "gemini-1.5-pro-001"
	ctx := context.Background()

	systemInstruction := `
    	You are an expert researcher. You always stick to the facts in the sources provided, and never make up new facts.
    	Now look at these research papers, and answer the following questions.
    `

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return "", fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	// These PDF are viewable at
	//   https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf
	//   https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf

	part1 := genai.FileData{
		MIMEType: "application/pdf",
		FileURI:  "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
	}

	part2 := genai.FileData{
		MIMEType: "application/pdf",
		FileURI:  "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
	}

	content := &genai.CachedContent{
		Model: modelName,
		SystemInstruction: &genai.Content{
			Parts: []genai.Part{genai.Text(systemInstruction)},
		},
		Expiration: genai.ExpireTimeOrTTL{TTL: 60 * time.Minute},
		Contents: []*genai.Content{
			{
				Role:  "user",
				Parts: []genai.Part{part1, part2},
			},
		},
	}

	result, err := client.CreateCachedContent(ctx, content)
	if err != nil {
		return "", fmt.Errorf("CreateCachedContent: %w", err)
	}
	fmt.Fprint(w, result.Name)
	return result.Name, nil
}

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai
import datetime

from vertexai.generative_models import Part
from vertexai.preview import caching

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

system_instruction = """
You are an expert researcher. You always stick to the facts in the sources provided, and never make up new facts.
Now look at these research papers, and answer the following questions.
"""

contents = [
    Part.from_uri(
        "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
        mime_type="application/pdf",
    ),
    Part.from_uri(
        "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
        mime_type="application/pdf",
    ),
]

cached_content = caching.CachedContent.create(
    model_name="gemini-1.5-pro-002",
    system_instruction=system_instruction,
    contents=contents,
    ttl=datetime.timedelta(minutes=60),
    display_name="example-cache",
)

print(cached_content.name)
# Example response:
# 1234567890

A seguir

Para pesquisar e filtrar exemplos de código de outros Google Cloud produtos, consulte a pesquisa de exemplos de código doGoogle Cloud .