Usar a chamada de função com o Gemini usando o SDK da OpenAI

Este exemplo de código demonstra como fazer chamadas de função no Gemini usando a API Chat Completions no SDK da OpenAI.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai
import openai

from google.auth import default, transport

# TODO(developer): Update & uncomment below line
# PROJECT_ID = "your-project-id"
location = "us-central1"

vertexai.init(project=PROJECT_ID, location=location)

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
auth_request = transport.requests.Request()
credentials.refresh(auth_request)

# OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{location}/endpoints/openapi",
    api_key=credentials.token,
)

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616",
                    },
                },
                "required": ["location"],
            },
        },
    }
]

messages = []
messages.append(
    {
        "role": "system",
        "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",
    }
)
messages.append({"role": "user", "content": "What is the weather in Boston, MA?"})

response = client.chat.completions.create(
    model="google/gemini-1.5-flash-002",
    messages=messages,
    tools=tools,
    tool_choice="auto",
)

print("Function:", response.choices[0].message.tool_calls[0].id)
print("Arguments:", response.choices[0].message.tool_calls[0].function.arguments)
# Example response:
# Function: get_current_weather
# Arguments: {"location":"Boston"}

A seguir

Para pesquisar e filtrar exemplos de código de outros Google Cloud produtos, consulte a pesquisa de exemplos de código doGoogle Cloud .