Elabora immagini, video, audio e testo con Gemini 1.5 Pro

Questo esempio mostra come elaborare immagini, video, audio e testo contemporaneamente. Questo esempio funziona solo con Gemini 1.5 Pro.

Esempio di codice

C#

Prima di provare questo esempio, segui le istruzioni di configurazione di C# nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI C#.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class MultimodalAllInput
{
    public async Task<string> AnswerFromMultimodalInput(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-2.0-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = "Watch each frame in the video carefully and answer the questions.\n"
                  + "Only base your answers strictly on what information is available in "
                  + "the video attached. Do not make up any information that is not part "
                  + "of the video and do not be too verbose, be to the point.\n\n"
                  + "Questions:\n"
                  + "- When is the moment in the image happening in the video? "
                  + "Provide a timestamp.\n"
                  + "- What is the context of the moment and what does the narrator say about it?";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "video/mp4", FileUri = "gs://cloud-samples-data/generative-ai/video/behind_the_scenes_pixel.mp4" } },
                        new Part { FileData = new() { MimeType = "image/png", FileUri = "gs://cloud-samples-data/generative-ai/image/a-man-and-a-dog.png" } }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Node.js.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function analyze_all_modalities(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-2.0-flash-001',
  });

  const videoFilePart = {
    file_data: {
      file_uri:
        'gs://cloud-samples-data/generative-ai/video/behind_the_scenes_pixel.mp4',
      mime_type: 'video/mp4',
    },
  };
  const imageFilePart = {
    file_data: {
      file_uri:
        'gs://cloud-samples-data/generative-ai/image/a-man-and-a-dog.png',
      mime_type: 'image/png',
    },
  };

  const textPart = {
    text: `
    Watch each frame in the video carefully and answer the questions.
    Only base your answers strictly on what information is available in the video attached.
    Do not make up any information that is not part of the video and do not be too
    verbose, be to the point.

    Questions:
    - When is the moment in the image happening in the video? Provide a timestamp.
    - What is the context of the moment and what does the narrator say about it?`,
  };

  const request = {
    contents: [{role: 'user', parts: [videoFilePart, imageFilePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .