Avalie o desempenho do modelo

Este exemplo de código demonstra como avaliar o desempenho de um modelo de IA gen. Mostra como definir a especificação de avaliação, avaliar o modelo e obter as métricas de avaliação.

Explore mais

Para ver documentação detalhada que inclui este exemplo de código, consulte o seguinte:

Exemplo de código

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

import os

from google.auth import default

import vertexai
from vertexai.preview.language_models import (
    EvaluationTextClassificationSpec,
    TextGenerationModel,
)

PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")


def evaluate_model() -> object:
    """Evaluate the performance of a generative AI model."""

    # Set credentials for the pipeline components used in the evaluation task
    credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])

    vertexai.init(project=PROJECT_ID, location="us-central1", credentials=credentials)

    # Create a reference to a generative AI model
    model = TextGenerationModel.from_pretrained("text-bison@002")

    # Define the evaluation specification for a text classification task
    task_spec = EvaluationTextClassificationSpec(
        ground_truth_data=[
            "gs://cloud-samples-data/ai-platform/generative_ai/llm_classification_bp_input_prompts_with_ground_truth.jsonl"
        ],
        class_names=["nature", "news", "sports", "health", "startups"],
        target_column_name="ground_truth",
    )

    # Evaluate the model
    eval_metrics = model.evaluate(task_spec=task_spec)
    print(eval_metrics)
    # Example response:
    # ...
    # PipelineJob run completed.
    # Resource name: projects/123456789/locations/us-central1/pipelineJobs/evaluation-llm-classification-...
    # EvaluationClassificationMetric(label_name=None, auPrc=0.53833705, auRoc=0.8...

    return eval_metrics

O que se segue?

Para pesquisar e filtrar exemplos de código para outros Google Cloud produtos, consulte o Google Cloud navegador de exemplos.