Specifica la dimensione dell'embedding per l'input multimodale

Questo esempio di codice mostra come specificare una dimensione di embedding inferiore per gli input di testo e immagine.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Go.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"encoding/json"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1beta1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb"
	"google.golang.org/api/option"
	"google.golang.org/protobuf/encoding/protojson"
	"google.golang.org/protobuf/types/known/structpb"
)

// generateWithLowerDimension shows how to generate lower-dimensional embeddings for text and image inputs.
func generateWithLowerDimension(w io.Writer, project, location string) error {
	// location = "us-central1"
	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("failed to construct API client: %w", err)
	}
	defer client.Close()

	model := "multimodalembedding@001"
	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)

	// This is the input to the model's prediction call. For schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#request_body
	instance, err := structpb.NewValue(map[string]any{
		"image": map[string]any{
			// Image input can be provided either as a Google Cloud Storage URI or as
			// base64-encoded bytes using the "bytesBase64Encoded" field.
			"gcsUri": "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png",
		},
		"text": "Colosseum",
	})
	if err != nil {
		return fmt.Errorf("failed to construct request payload: %w", err)
	}

	// TODO(developer): Try different dimenions: 128, 256, 512, 1408
	outputDimensionality := 128
	params, err := structpb.NewValue(map[string]any{
		"dimension": outputDimensionality,
	})
	if err != nil {
		return fmt.Errorf("failed to construct request params: %w", err)
	}

	req := &aiplatformpb.PredictRequest{
		Endpoint: endpoint,
		// The model supports only 1 instance per request.
		Instances:  []*structpb.Value{instance},
		Parameters: params,
	}

	resp, err := client.Predict(ctx, req)
	if err != nil {
		return fmt.Errorf("failed to generate embeddings: %w", err)
	}

	instanceEmbeddingsJson, err := protojson.Marshal(resp.GetPredictions()[0])
	if err != nil {
		return fmt.Errorf("failed to convert protobuf value to JSON: %w", err)
	}
	// For response schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#response-body
	var instanceEmbeddings struct {
		ImageEmbeddings []float32 `json:"imageEmbedding"`
		TextEmbeddings  []float32 `json:"textEmbedding"`
	}
	if err := json.Unmarshal(instanceEmbeddingsJson, &instanceEmbeddings); err != nil {
		return fmt.Errorf("failed to unmarshal JSON: %w", err)
	}

	imageEmbedding := instanceEmbeddings.ImageEmbeddings
	textEmbedding := instanceEmbeddings.TextEmbeddings

	fmt.Fprintf(w, "Text embedding (length=%d): %v\n", len(textEmbedding), textEmbedding)
	fmt.Fprintf(w, "Image embedding (length=%d): %v\n", len(imageEmbedding), imageEmbedding)
	// Example response:
	// Text Embedding (length=128): [0.27469793 -0.14625867 0.022280363 ... ]
	// Image Embedding (length=128): [0.06225733 -0.040650766 0.02604402 ... ]

	return nil
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Python.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

import vertexai

from vertexai.vision_models import Image, MultiModalEmbeddingModel

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

# TODO(developer): Try different dimenions: 128, 256, 512, 1408
embedding_dimension = 128

model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")
image = Image.load_from_file(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"
)

embeddings = model.get_embeddings(
    image=image,
    contextual_text="Colosseum",
    dimension=embedding_dimension,
)

print(f"Image Embedding: {embeddings.image_embedding}")
print(f"Text Embedding: {embeddings.text_embedding}")

# Example response:
# Image Embedding: [0.0622573346, -0.0406507477, 0.0260440577, ...]
# Text Embedding: [0.27469793, -0.146258667, 0.0222803634, ...]

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .