Gere incorporações para a obtenção de código

Este exemplo demonstra como usar os modelos de incorporação de texto da Vertex AI para calcular incorporações de blocos de código e consultas para tarefas de obtenção de código.

Explore mais

Para ver documentação detalhada que inclui este exemplo de código, consulte o seguinte:

Exemplo de código

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Python Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel

MODEL_NAME = "gemini-embedding-001"
DIMENSIONALITY = 3072


def embed_text(
    texts: list[str] = ["Retrieve a function that adds two numbers"],
    task: str = "CODE_RETRIEVAL_QUERY",
    model_name: str = "gemini-embedding-001",
    dimensionality: int | None = 3072,
) -> list[list[float]]:
    """Embeds texts with a pre-trained, foundational model."""
    model = TextEmbeddingModel.from_pretrained(model_name)
    kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}

    embeddings = []
    # gemini-embedding-001 takes one input at a time
    for text in texts:
        text_input = TextEmbeddingInput(text, task)
        embedding = model.get_embeddings([text_input], **kwargs)
        print(embedding)
        # Example response:
        # [[0.006135190837085247, -0.01462465338408947, 0.004978656303137541, ...]]
        embeddings.append(embedding[0].values)

    return embeddings


if __name__ == "__main__":
    # Embeds code block with a pre-trained, foundational model.
    # Using this function to calculate the embedding for corpus.
    texts = ["Retrieve a function that adds two numbers"]
    task = "CODE_RETRIEVAL_QUERY"
    code_block_embeddings = embed_text(
        texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY
    )

    # Embeds code retrieval with a pre-trained, foundational model.
    # Using this function to calculate the embedding for query.
    texts = [
        "def func(a, b): return a + b",
        "def func(a, b): return a - b",
        "def func(a, b): return (a ** 2 + b ** 2) ** 0.5",
    ]
    task = "RETRIEVAL_DOCUMENT"
    code_query_embeddings = embed_text(
        texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY
    )

O que se segue?

Para pesquisar e filtrar exemplos de código para outros Google Cloud produtos, consulte o Google Cloud navegador de exemplos.