Générer des embeddings pour la récupération de code
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Cet exemple montre comment utiliser les modèles d'embedding textuel (ou "plongement textuel") Vertex AI pour calculer des embeddings pour les blocs de code et les requêtes pour les tâches de récupération de code.
En savoir plus
Pour obtenir une documentation détaillée incluant cet exemple de code, consultez la page suivante :
Exemple de code
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],[],[],[],null,["# Generate Embeddings for Code Retrieval\n\nThis sample demonstrates how to use Vertex AI text embedding models to calculate embeddings for code blocks and queries for code retrieval tasks.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Choose an embeddings task type](/vertex-ai/generative-ai/docs/embeddings/task-types)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel\n\n MODEL_NAME = \"gemini-embedding-001\"\n DIMENSIONALITY = 3072\n\n\n def embed_text(\n texts: list[str] = [\"Retrieve a function that adds two numbers\"],\n task: str = \"CODE_RETRIEVAL_QUERY\",\n model_name: str = \"gemini-embedding-001\",\n dimensionality: int | None = 3072,\n ) -\u003e list[list[float]]:\n \"\"\"Embeds texts with a pre-trained, foundational model.\"\"\"\n model = TextEmbeddingModel.from_pretrained(model_name)\n kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}\n\n embeddings = []\n # gemini-embedding-001 takes one input at a time\n for text in texts:\n text_input = TextEmbeddingInput(text, task)\n embedding = model.get_embeddings([text_input], **kwargs)\n print(embedding)\n # Example response:\n # [[0.006135190837085247, -0.01462465338408947, 0.004978656303137541, ...]]\n embeddings.append(embedding[0].values)\n\n return embeddings\n\n\n if __name__ == \"__main__\":\n # Embeds code block with a pre-trained, foundational model.\n # Using this function to calculate the embedding for corpus.\n texts = [\"Retrieve a function that adds two numbers\"]\n task = \"CODE_RETRIEVAL_QUERY\"\n code_block_embeddings = embed_text(\n texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY\n )\n\n # Embeds code retrieval with a pre-trained, foundational model.\n # Using this function to calculate the embedding for query.\n texts = [\n \"def func(a, b): return a + b\",\n \"def func(a, b): return a - b\",\n \"def func(a, b): return (a ** 2 + b ** 2) ** 0.5\",\n ]\n task = \"RETRIEVAL_DOCUMENT\"\n code_query_embeddings = embed_text(\n texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY\n )\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]