Generar inserciones para la recuperación de código

En este ejemplo se muestra cómo usar los modelos de inserción de texto de Vertex AI para calcular las inserciones de bloques de código y consultas para tareas de recuperación de código.

Investigar más

Para obtener documentación detallada que incluya este código de muestra, consulta lo siguiente:

Código de ejemplo

Python

Antes de probar este ejemplo, sigue las Python instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Python de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel

MODEL_NAME = "gemini-embedding-001"
DIMENSIONALITY = 3072


def embed_text(
    texts: list[str] = ["Retrieve a function that adds two numbers"],
    task: str = "CODE_RETRIEVAL_QUERY",
    model_name: str = "gemini-embedding-001",
    dimensionality: int | None = 3072,
) -> list[list[float]]:
    """Embeds texts with a pre-trained, foundational model."""
    model = TextEmbeddingModel.from_pretrained(model_name)
    kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}

    embeddings = []
    # gemini-embedding-001 takes one input at a time
    for text in texts:
        text_input = TextEmbeddingInput(text, task)
        embedding = model.get_embeddings([text_input], **kwargs)
        print(embedding)
        # Example response:
        # [[0.006135190837085247, -0.01462465338408947, 0.004978656303137541, ...]]
        embeddings.append(embedding[0].values)

    return embeddings


if __name__ == "__main__":
    # Embeds code block with a pre-trained, foundational model.
    # Using this function to calculate the embedding for corpus.
    texts = ["Retrieve a function that adds two numbers"]
    task = "CODE_RETRIEVAL_QUERY"
    code_block_embeddings = embed_text(
        texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY
    )

    # Embeds code retrieval with a pre-trained, foundational model.
    # Using this function to calculate the embedding for query.
    texts = [
        "def func(a, b): return a + b",
        "def func(a, b): return a - b",
        "def func(a, b): return (a ** 2 + b ** 2) ** 0.5",
    ]
    task = "RETRIEVAL_DOCUMENT"
    code_query_embeddings = embed_text(
        texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY
    )

Siguientes pasos

Para buscar y filtrar ejemplos de código de otros Google Cloud productos, consulta el Google Cloud navegador de ejemplos.