Generar inserciones a partir de texto mediante el procesamiento por lotes

En el código de ejemplo se muestra cómo usar un modelo preentrenado para generar por lotes las inserciones de una lista de entradas de texto y almacenarlas en una ubicación específica.

Código de ejemplo

Java

Antes de probar este ejemplo, sigue las Java instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Java de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;

public class EmbeddingBatchSample {

  public static void main(String[] args) throws IOException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String location = "us-central1";
    // inputUri: URI of the input dataset.
    // Could be a BigQuery table or a Google Cloud Storage file.
    // E.g. "gs://[BUCKET]/[DATASET].jsonl" OR "bq://[PROJECT].[DATASET].[TABLE]"
    String inputUri = "gs://cloud-samples-data/generative-ai/embeddings/embeddings_input.jsonl";
    // outputUri: URI where the output will be stored.
    // Could be a BigQuery table or a Google Cloud Storage file.
    // E.g. "gs://[BUCKET]/[OUTPUT].jsonl" OR "bq://[PROJECT].[DATASET].[TABLE]"
    String outputUri = "gs://YOUR_BUCKET/embedding_batch_output";
    String textEmbeddingModel = "text-embedding-005";

    embeddingBatchSample(project, location, inputUri, outputUri, textEmbeddingModel);
  }

  // Generates embeddings from text using batch processing.
  // Read more: https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/batch-prediction-genai-embeddings
  public static BatchPredictionJob embeddingBatchSample(
      String project, String location, String inputUri, String outputUri, String textEmbeddingModel)
      throws IOException {
    BatchPredictionJob response;
    JobServiceSettings jobServiceSettings =  JobServiceSettings.newBuilder()
        .setEndpoint("us-central1-aiplatform.googleapis.com:443").build();
    LocationName parent = LocationName.of(project, location);
    String modelName = String.format("projects/%s/locations/%s/publishers/google/models/%s",
        project, location, textEmbeddingModel);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (JobServiceClient client = JobServiceClient.create(jobServiceSettings)) {
      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName("my embedding batch job " + System.currentTimeMillis())
              .setModel(modelName)
              .setInputConfig(
                  BatchPredictionJob.InputConfig.newBuilder()
                      .setGcsSource(GcsSource.newBuilder().addUris(inputUri).build())
                      .setInstancesFormat("jsonl")
                      .build())
              .setOutputConfig(
                  BatchPredictionJob.OutputConfig.newBuilder()
                      .setGcsDestination(GcsDestination.newBuilder()
                          .setOutputUriPrefix(outputUri).build())
                      .setPredictionsFormat("jsonl")
                      .build())
              .build();

      response = client.createBatchPredictionJob(parent, batchPredictionJob);

      System.out.format("response: %s\n", response);
      System.out.format("\tName: %s\n", response.getName());
    }
    return response;
  }
}

Python

Antes de probar este ejemplo, sigue las Python instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Python de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import vertexai

from vertexai.preview import language_models

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")
input_uri = (
    "gs://cloud-samples-data/generative-ai/embeddings/embeddings_input.jsonl"
)
# Format: `"gs://your-bucket-unique-name/directory/` or `bq://project_name.llm_dataset`
output_uri = OUTPUT_URI

textembedding_model = language_models.TextEmbeddingModel.from_pretrained(
    "textembedding-gecko@003"
)

batch_prediction_job = textembedding_model.batch_predict(
    dataset=[input_uri],
    destination_uri_prefix=output_uri,
)
print(batch_prediction_job.display_name)
print(batch_prediction_job.resource_name)
print(batch_prediction_job.state)
# Example response:
# BatchPredictionJob 2024-09-10 15:47:51.336391
# projects/1234567890/locations/us-central1/batchPredictionJobs/123456789012345
# JobState.JOB_STATE_SUCCEEDED

Siguientes pasos

Para buscar y filtrar ejemplos de código de otros Google Cloud productos, consulta el Google Cloud navegador de ejemplos.