public final class ModelExplanation extends GeneratedMessageV3 implements ModelExplanationOrBuilder
Aggregated explanation metrics for a Model over a set of instances.
Protobuf type google.cloud.vertexai.v1beta1.ModelExplanation
Inherited Members
com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT)
com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT,int)
com.google.protobuf.GeneratedMessageV3.<T>emptyList(java.lang.Class<T>)
com.google.protobuf.GeneratedMessageV3.internalGetMapFieldReflection(int)
Static Fields
MEAN_ATTRIBUTIONS_FIELD_NUMBER
public static final int MEAN_ATTRIBUTIONS_FIELD_NUMBER
Field Value |
Type |
Description |
int |
|
Static Methods
getDefaultInstance()
public static ModelExplanation getDefaultInstance()
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
newBuilder()
public static ModelExplanation.Builder newBuilder()
newBuilder(ModelExplanation prototype)
public static ModelExplanation.Builder newBuilder(ModelExplanation prototype)
public static ModelExplanation parseDelimitedFrom(InputStream input)
public static ModelExplanation parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
parseFrom(byte[] data)
public static ModelExplanation parseFrom(byte[] data)
Parameter |
Name |
Description |
data |
byte[]
|
parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
public static ModelExplanation parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
parseFrom(ByteString data)
public static ModelExplanation parseFrom(ByteString data)
parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
public static ModelExplanation parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
public static ModelExplanation parseFrom(CodedInputStream input)
public static ModelExplanation parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public static ModelExplanation parseFrom(InputStream input)
public static ModelExplanation parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
parseFrom(ByteBuffer data)
public static ModelExplanation parseFrom(ByteBuffer data)
parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
public static ModelExplanation parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
parser()
public static Parser<ModelExplanation> parser()
Methods
equals(Object obj)
public boolean equals(Object obj)
Parameter |
Name |
Description |
obj |
Object
|
Overrides
getDefaultInstanceForType()
public ModelExplanation getDefaultInstanceForType()
getMeanAttributions(int index)
public Attribution getMeanAttributions(int index)
Output only. Aggregated attributions explaining the Model's prediction
outputs over the set of instances. The attributions are grouped by outputs.
For Models that predict only one output, such as regression Models that
predict only one score, there is only one attibution that explains the
predicted output. For Models that predict multiple outputs, such as
multiclass Models that predict multiple classes, each element explains one
specific item.
Attribution.output_index
can be used to identify which output this attribution is explaining.
The
baselineOutputValue,
instanceOutputValue
and
featureAttributions
fields are averaged over the test data.
NOTE: Currently AutoML tabular classification Models produce only one
attribution, which averages attributions over all the classes it predicts.
Attribution.approximation_error
is not populated.
repeated .google.cloud.vertexai.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
Parameter |
Name |
Description |
index |
int
|
getMeanAttributionsCount()
public int getMeanAttributionsCount()
Output only. Aggregated attributions explaining the Model's prediction
outputs over the set of instances. The attributions are grouped by outputs.
For Models that predict only one output, such as regression Models that
predict only one score, there is only one attibution that explains the
predicted output. For Models that predict multiple outputs, such as
multiclass Models that predict multiple classes, each element explains one
specific item.
Attribution.output_index
can be used to identify which output this attribution is explaining.
The
baselineOutputValue,
instanceOutputValue
and
featureAttributions
fields are averaged over the test data.
NOTE: Currently AutoML tabular classification Models produce only one
attribution, which averages attributions over all the classes it predicts.
Attribution.approximation_error
is not populated.
repeated .google.cloud.vertexai.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns |
Type |
Description |
int |
|
getMeanAttributionsList()
public List<Attribution> getMeanAttributionsList()
Output only. Aggregated attributions explaining the Model's prediction
outputs over the set of instances. The attributions are grouped by outputs.
For Models that predict only one output, such as regression Models that
predict only one score, there is only one attibution that explains the
predicted output. For Models that predict multiple outputs, such as
multiclass Models that predict multiple classes, each element explains one
specific item.
Attribution.output_index
can be used to identify which output this attribution is explaining.
The
baselineOutputValue,
instanceOutputValue
and
featureAttributions
fields are averaged over the test data.
NOTE: Currently AutoML tabular classification Models produce only one
attribution, which averages attributions over all the classes it predicts.
Attribution.approximation_error
is not populated.
repeated .google.cloud.vertexai.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
getMeanAttributionsOrBuilder(int index)
public AttributionOrBuilder getMeanAttributionsOrBuilder(int index)
Output only. Aggregated attributions explaining the Model's prediction
outputs over the set of instances. The attributions are grouped by outputs.
For Models that predict only one output, such as regression Models that
predict only one score, there is only one attibution that explains the
predicted output. For Models that predict multiple outputs, such as
multiclass Models that predict multiple classes, each element explains one
specific item.
Attribution.output_index
can be used to identify which output this attribution is explaining.
The
baselineOutputValue,
instanceOutputValue
and
featureAttributions
fields are averaged over the test data.
NOTE: Currently AutoML tabular classification Models produce only one
attribution, which averages attributions over all the classes it predicts.
Attribution.approximation_error
is not populated.
repeated .google.cloud.vertexai.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
Parameter |
Name |
Description |
index |
int
|
getMeanAttributionsOrBuilderList()
public List<? extends AttributionOrBuilder> getMeanAttributionsOrBuilderList()
Output only. Aggregated attributions explaining the Model's prediction
outputs over the set of instances. The attributions are grouped by outputs.
For Models that predict only one output, such as regression Models that
predict only one score, there is only one attibution that explains the
predicted output. For Models that predict multiple outputs, such as
multiclass Models that predict multiple classes, each element explains one
specific item.
Attribution.output_index
can be used to identify which output this attribution is explaining.
The
baselineOutputValue,
instanceOutputValue
and
featureAttributions
fields are averaged over the test data.
NOTE: Currently AutoML tabular classification Models produce only one
attribution, which averages attributions over all the classes it predicts.
Attribution.approximation_error
is not populated.
repeated .google.cloud.vertexai.v1beta1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns |
Type |
Description |
List<? extends com.google.cloud.vertexai.api.AttributionOrBuilder> |
|
getParserForType()
public Parser<ModelExplanation> getParserForType()
Overrides
getSerializedSize()
public int getSerializedSize()
Returns |
Type |
Description |
int |
|
Overrides
hashCode()
Returns |
Type |
Description |
int |
|
Overrides
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Overrides
isInitialized()
public final boolean isInitialized()
Overrides
newBuilderForType()
public ModelExplanation.Builder newBuilderForType()
newBuilderForType(GeneratedMessageV3.BuilderParent parent)
protected ModelExplanation.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Overrides
newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Returns |
Type |
Description |
Object |
|
Overrides
toBuilder()
public ModelExplanation.Builder toBuilder()
writeTo(CodedOutputStream output)
public void writeTo(CodedOutputStream output)
Overrides