Package cloud.google.com/go/vertexai/genai (v0.5.2)

Package genai is a client for the generative VertexAI model.

Blob

type Blob struct {
	// Required. The IANA standard MIME type of the source data.
	MIMEType string
	// Required. Raw bytes for media formats.
	Data []byte
}

Blob contains raw media bytes.

Text should not be sent as raw bytes, use the 'text' field.

func ImageData

func ImageData(format string, data []byte) Blob

ImageData is a convenience function for creating an image Blob for input to a model. The format should be the second part of the MIME type, after "image/". For example, for a PNG image, pass "png".

BlockedError

type BlockedError struct {
	// If non-nil, the model's response was blocked.
	// Consult the Candidate and SafetyRatings fields for details.
	Candidate *Candidate

	// If non-nil, there was a problem with the prompt.
	PromptFeedback *PromptFeedback
}

A BlockedError indicates that the model's response was blocked. There can be two underlying causes: the prompt or a candidate response.

func (*BlockedError) Error

func (e *BlockedError) Error() string

BlockedReason

type BlockedReason int32

BlockedReason is blocked reason enumeration.

BlockedReasonUnspecified, BlockedReasonSafety, BlockedReasonOther

const (
	// BlockedReasonUnspecified means unspecified blocked reason.
	BlockedReasonUnspecified BlockedReason = 0
	// BlockedReasonSafety means candidates blocked due to safety.
	BlockedReasonSafety BlockedReason = 1
	// BlockedReasonOther means candidates blocked due to other reason.
	BlockedReasonOther BlockedReason = 2
)

func (BlockedReason) String

func (v BlockedReason) String() string

Candidate

type Candidate struct {
	// Output only. Index of the candidate.
	Index int32
	// Output only. Content parts of the candidate.
	Content *Content
	// Output only. The reason why the model stopped generating tokens.
	// If empty, the model has not stopped generating the tokens.
	FinishReason FinishReason
	// Output only. List of ratings for the safety of a response candidate.
	//
	// There is at most one rating per category.
	SafetyRatings []*SafetyRating
	// Output only. Describes the reason the mode stopped generating tokens in
	// more detail. This is only filled when `finish_reason` is set.
	FinishMessage string
	// Output only. Source attribution of the generated content.
	CitationMetadata *CitationMetadata
}

Candidate is a response candidate generated from the model.

ChatSession

type ChatSession struct {
	History []*Content
	// contains filtered or unexported fields
}

A ChatSession provides interactive chat.

Example

package main

import (
	"context"
	"fmt"
	"log"

	"cloud.google.com/go/vertexai/genai"

	"google.golang.org/api/iterator"
)

// Your GCP project
const projectID = "your-project"

// A GCP location like "us-central1"
const location = "some-gcp-location"

// A model name like "gemini-pro"
const model = "some-model"

func main() {
	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		log.Fatal(err)
	}
	defer client.Close()
	model := client.GenerativeModel(model)
	cs := model.StartChat()

	send := func(msg string) *genai.GenerateContentResponse {
		fmt.Printf("== Me: %s\n== Model:\n", msg)
		res, err := cs.SendMessage(ctx, genai.Text(msg))
		if err != nil {
			log.Fatal(err)
		}
		return res
	}

	res := send("Can you name some brands of air fryer?")
	printResponse(res)
	iter := cs.SendMessageStream(ctx, genai.Text("Which one of those do you recommend?"))
	for {
		res, err := iter.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			log.Fatal(err)
		}
		printResponse(res)
	}

	for i, c := range cs.History {
		log.Printf("    %d: %+v", i, c)
	}
	res = send("Why do you like the Philips?")
	if err != nil {
		log.Fatal(err)
	}
	printResponse(res)
}

func printResponse(resp *genai.GenerateContentResponse) {
	for _, cand := range resp.Candidates {
		for _, part := range cand.Content.Parts {
			fmt.Println(part)
		}
	}
	fmt.Println("---")
}

func (*ChatSession) SendMessage

func (cs *ChatSession) SendMessage(ctx context.Context, parts ...Part) (*GenerateContentResponse, error)

SendMessage sends a request to the model as part of a chat session.

func (*ChatSession) SendMessageStream

func (cs *ChatSession) SendMessageStream(ctx context.Context, parts ...Part) *GenerateContentResponseIterator

SendMessageStream is like SendMessage, but with a streaming request.

Citation

type Citation struct {
	// Output only. Start index into the content.
	StartIndex int32
	// Output only. End index into the content.
	EndIndex int32
	// Output only. Url reference of the attribution.
	URI string
	// Output only. Title of the attribution.
	Title string
	// Output only. License of the attribution.
	License string
	// Output only. Publication date of the attribution.
	PublicationDate civil.Date
}

Citation contains source attributions for content.

CitationMetadata

type CitationMetadata struct {
	// Output only. List of citations.
	Citations []*Citation
}

CitationMetadata is a collection of source attributions for a piece of content.

Client

type Client struct {
	// contains filtered or unexported fields
}

A Client is a Google Vertex AI client.

func NewClient

func NewClient(ctx context.Context, projectID, location string, opts ...option.ClientOption) (*Client, error)

NewClient creates a new Google Vertex AI client.

Clients should be reused instead of created as needed. The methods of Client are safe for concurrent use by multiple goroutines.

You may configure the client by passing in options from the [google.golang.org/api/option] package.

func (*Client) Close

func (c *Client) Close() error

Close closes the client.

func (*Client) GenerativeModel

func (c *Client) GenerativeModel(name string) *GenerativeModel

GenerativeModel creates a new instance of the named model.

Content

type Content struct {
	// Optional. The producer of the content. Must be either 'user' or 'model'.
	//
	// Useful to set for multi-turn conversations, otherwise can be left blank
	// or unset.
	Role string
	// Required. Ordered `Parts` that constitute a single message. Parts may have
	// different IANA MIME types.
	Parts []Part
}

Content is the base structured datatype containing multi-part content of a message.

A Content includes a role field designating the producer of the Content and a parts field containing multi-part data that contains the content of the message turn.

CountTokensResponse

type CountTokensResponse struct {
	// The total number of tokens counted across all instances from the request.
	TotalTokens int32
	// The total number of billable characters counted across all instances from
	// the request.
	TotalBillableCharacters int32
}

CountTokensResponse is response message for [PredictionService.CountTokens][google.cloud.aiplatform.v1beta1.PredictionService.CountTokens].

FileData

type FileData struct {
	// Required. The IANA standard MIME type of the source data.
	MIMEType string
	// Required. URI.
	FileURI string
}

FileData is URI based data.

FinishReason

type FinishReason int32

FinishReason is the reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.

FinishReasonUnspecified, FinishReasonStop, FinishReasonMaxTokens, FinishReasonSafety, FinishReasonRecitation, FinishReasonOther

const (
	// FinishReasonUnspecified means the finish reason is unspecified.
	FinishReasonUnspecified FinishReason = 0
	// FinishReasonStop means natural stop point of the model or provided stop sequence.
	FinishReasonStop FinishReason = 1
	// FinishReasonMaxTokens means the maximum number of tokens as specified in the request was reached.
	FinishReasonMaxTokens FinishReason = 2
	// FinishReasonSafety means the token generation was stopped as the response was flagged for safety
	// reasons. NOTE: When streaming the Candidate.content will be empty if
	// content filters blocked the output.
	FinishReasonSafety FinishReason = 3
	// FinishReasonRecitation means the token generation was stopped as the response was flagged for
	// unauthorized citations.
	FinishReasonRecitation FinishReason = 4
	// FinishReasonOther means all other reasons that stopped the token generation
	FinishReasonOther FinishReason = 5
)

func (FinishReason) String

func (v FinishReason) String() string

FunctionCall

type FunctionCall struct {
	// Required. The name of the function to call.
	// Matches [FunctionDeclaration.name].
	Name string
	// Optional. Required. The function parameters and values in JSON object
	// format. See [FunctionDeclaration.parameters] for parameter details.
	Args map[string]any
}

FunctionCall is a predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values.

FunctionDeclaration

type FunctionDeclaration struct {
	// Required. The name of the function to call.
	// Must start with a letter or an underscore.
	// Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum
	// length of 64.
	Name string
	// Optional. Description and purpose of the function.
	// Model uses it to decide how and whether to call the function.
	Description string
	// Optional. Describes the parameters to this function in JSON Schema Object
	// format. Reflects the Open API 3.03 Parameter Object. string Key: the name
	// of the parameter. Parameter names are case sensitive. Schema Value: the
	// Schema defining the type used for the parameter. For function with no
	// parameters, this can be left unset. Example with 1 required and 1 optional
	// parameter: type: OBJECT properties:
	//  param1:
	//    type: STRING
	//  param2:
	//    type: INTEGER
	// required:
	//  - param1
	Parameters *Schema
}

FunctionDeclaration is structured representation of a function declaration as defined by the OpenAPI 3.0 specification. Included in this declaration are the function name and parameters. This FunctionDeclaration is a representation of a block of code that can be used as a Tool by the model and executed by the client.

FunctionResponse

type FunctionResponse struct {
	// Required. The name of the function to call.
	// Matches [FunctionDeclaration.name] and [FunctionCall.name].
	Name string
	// Required. The function response in JSON object format.
	Response map[string]any
}

FunctionResponse is the result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction.

GenerateContentResponse

type GenerateContentResponse struct {
	// Output only. Generated candidates.
	Candidates []*Candidate
	// Output only. Content filter results for a prompt sent in the request.
	// Note: Sent only in the first stream chunk.
	// Only happens when no candidates were generated due to content violations.
	PromptFeedback *PromptFeedback
	// Usage metadata about the response(s).
	UsageMetadata *UsageMetadata
}

GenerateContentResponse is the response from a GenerateContent or GenerateContentStream call.

GenerateContentResponseIterator

type GenerateContentResponseIterator struct {
	// contains filtered or unexported fields
}

GenerateContentResponseIterator is an iterator over GnerateContentResponse.

func (*GenerateContentResponseIterator) Next

Next returns the next response.

GenerationConfig

type GenerationConfig struct {
	// Optional. Controls the randomness of predictions.
	Temperature float32
	// Optional. If specified, nucleus sampling will be used.
	TopP float32
	// Optional. If specified, top-k sampling will be used.
	TopK float32
	// Optional. Number of candidates to generate.
	CandidateCount int32
	// Optional. The maximum number of output tokens to generate per message.
	MaxOutputTokens int32
	// Optional. Stop sequences.
	StopSequences []string
}

GenerationConfig is generation config.

GenerativeModel

type GenerativeModel struct {
	GenerationConfig
	SafetySettings []*SafetySetting
	Tools          []*Tool
	// contains filtered or unexported fields
}

GenerativeModel is a model that can generate text. Create one with [Client.GenerativeModel], then configure it by setting the exported fields.

The model holds all the config for a GenerateContentRequest, so the GenerateContent method can use a vararg for the content.

func (*GenerativeModel) CountTokens

func (m *GenerativeModel) CountTokens(ctx context.Context, parts ...Part) (*CountTokensResponse, error)

CountTokens counts the number of tokens in the content.

Example

package main

import (
	"context"
	"fmt"
	"log"

	"cloud.google.com/go/vertexai/genai"
)

// Your GCP project
const projectID = "your-project"

// A GCP location like "us-central1"
const location = "some-gcp-location"

// A model name like "gemini-pro"
const model = "some-model"

func main() {
	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		log.Fatal(err)
	}
	defer client.Close()

	model := client.GenerativeModel(model)

	resp, err := model.CountTokens(ctx, genai.Text("What kind of fish is this?"))
	if err != nil {
		log.Fatal(err)
	}

	fmt.Println("Num tokens:", resp.TotalTokens)
}

func (*GenerativeModel) GenerateContent

func (m *GenerativeModel) GenerateContent(ctx context.Context, parts ...Part) (*GenerateContentResponse, error)

GenerateContent produces a single request and response.

Example

package main

import (
	"context"
	"fmt"
	"log"

	"cloud.google.com/go/vertexai/genai"
)

// Your GCP project
const projectID = "your-project"

// A GCP location like "us-central1"
const location = "some-gcp-location"

// A model name like "gemini-pro"
const model = "some-model"

func main() {
	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		log.Fatal(err)
	}
	defer client.Close()

	model := client.GenerativeModel(model)
	model.Temperature = 0.9
	resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
	if err != nil {
		log.Fatal(err)
	}

	printResponse(resp)
}

func printResponse(resp *genai.GenerateContentResponse) {
	for _, cand := range resp.Candidates {
		for _, part := range cand.Content.Parts {
			fmt.Println(part)
		}
	}
	fmt.Println("---")
}

func (*GenerativeModel) GenerateContentStream

func (m *GenerativeModel) GenerateContentStream(ctx context.Context, parts ...Part) *GenerateContentResponseIterator

GenerateContentStream returns an iterator that enumerates responses.

Example

package main

import (
	"context"
	"fmt"
	"log"

	"cloud.google.com/go/vertexai/genai"

	"google.golang.org/api/iterator"
)

// Your GCP project
const projectID = "your-project"

// A GCP location like "us-central1"
const location = "some-gcp-location"

// A model name like "gemini-pro"
const model = "some-model"

func main() {
	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		log.Fatal(err)
	}
	defer client.Close()

	model := client.GenerativeModel(model)

	iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
	for {
		resp, err := iter.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			log.Fatal(err)
		}
		printResponse(resp)
	}
}

func printResponse(resp *genai.GenerateContentResponse) {
	for _, cand := range resp.Candidates {
		for _, part := range cand.Content.Parts {
			fmt.Println(part)
		}
	}
	fmt.Println("---")
}

func (*GenerativeModel) Name

func (m *GenerativeModel) Name() string

Name returns the name of the model.

func (*GenerativeModel) StartChat

func (m *GenerativeModel) StartChat() *ChatSession

StartChat starts a chat session.

HarmBlockThreshold

type HarmBlockThreshold int32

HarmBlockThreshold specifies probability based thresholds levels for blocking.

HarmBlockUnspecified, HarmBlockLowAndAbove, HarmBlockMediumAndAbove, HarmBlockOnlyHigh, HarmBlockNone

const (
	// HarmBlockUnspecified means unspecified harm block threshold.
	HarmBlockUnspecified HarmBlockThreshold = 0
	// HarmBlockLowAndAbove means block low threshold and above (i.e. block more).
	HarmBlockLowAndAbove HarmBlockThreshold = 1
	// HarmBlockMediumAndAbove means block medium threshold and above.
	HarmBlockMediumAndAbove HarmBlockThreshold = 2
	// HarmBlockOnlyHigh means block only high threshold (i.e. block less).
	HarmBlockOnlyHigh HarmBlockThreshold = 3
	// HarmBlockNone means block none.
	HarmBlockNone HarmBlockThreshold = 4
)

func (HarmBlockThreshold) String

func (v HarmBlockThreshold) String() string

HarmCategory

type HarmCategory int32

HarmCategory specifies harm categories that will block the content.

HarmCategoryUnspecified, HarmCategoryHateSpeech, HarmCategoryDangerousContent, HarmCategoryHarassment, HarmCategorySexuallyExplicit

const (
	// HarmCategoryUnspecified means the harm category is unspecified.
	HarmCategoryUnspecified HarmCategory = 0
	// HarmCategoryHateSpeech means the harm category is hate speech.
	HarmCategoryHateSpeech HarmCategory = 1
	// HarmCategoryDangerousContent means the harm category is dangerous content.
	HarmCategoryDangerousContent HarmCategory = 2
	// HarmCategoryHarassment means the harm category is harassment.
	HarmCategoryHarassment HarmCategory = 3
	// HarmCategorySexuallyExplicit means the harm category is sexually explicit content.
	HarmCategorySexuallyExplicit HarmCategory = 4
)

func (HarmCategory) String

func (v HarmCategory) String() string

HarmProbability

type HarmProbability int32

HarmProbability specifies harm probability levels in the content.

HarmProbabilityUnspecified, HarmProbabilityNegligible, HarmProbabilityLow, HarmProbabilityMedium, HarmProbabilityHigh

const (
	// HarmProbabilityUnspecified means harm probability unspecified.
	HarmProbabilityUnspecified HarmProbability = 0
	// HarmProbabilityNegligible means negligible level of harm.
	HarmProbabilityNegligible HarmProbability = 1
	// HarmProbabilityLow means low level of harm.
	HarmProbabilityLow HarmProbability = 2
	// HarmProbabilityMedium means medium level of harm.
	HarmProbabilityMedium HarmProbability = 3
	// HarmProbabilityHigh means high level of harm.
	HarmProbabilityHigh HarmProbability = 4
)

func (HarmProbability) String

func (v HarmProbability) String() string

Part

type Part interface {
	// contains filtered or unexported methods
}

A Part is either a Text, a Blob, or a FileData.

PromptFeedback

type PromptFeedback struct {
	// Output only. Blocked reason.
	BlockReason BlockedReason
	// Output only. Safety ratings.
	SafetyRatings []*SafetyRating
	// Output only. A readable block reason message.
	BlockReasonMessage string
}

PromptFeedback contains content filter results for a prompt sent in the request.

SafetyRating

type SafetyRating struct {
	// Output only. Harm category.
	Category HarmCategory
	// Output only. Harm probability levels in the content.
	Probability HarmProbability
	// Output only. Indicates whether the content was filtered out because of this
	// rating.
	Blocked bool
}

SafetyRating is the safety rating corresponding to the generated content.

SafetySetting

type SafetySetting struct {
	// Required. Harm category.
	Category HarmCategory
	// Required. The harm block threshold.
	Threshold HarmBlockThreshold
}

SafetySetting is safety settings.

Schema

type Schema struct {
	// Optional. The type of the data.
	Type Type
	// Optional. The format of the data.
	// Supported formats:
	//  for NUMBER type: float, double
	//  for INTEGER type: int32, int64
	Format string
	// Optional. The description of the data.
	Description string
	// Optional. Indicates if the value may be null.
	Nullable bool
	// Optional. Schema of the elements of Type.ARRAY.
	Items *Schema
	// Optional. Possible values of the element of Type.STRING with enum format.
	// For example we can define an Enum Direction as :
	// {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]}
	Enum []string
	// Optional. Properties of Type.OBJECT.
	Properties map[string]*Schema
	// Optional. Required properties of Type.OBJECT.
	Required []string
}

Schema is used to define the format of input/output data. Represents a select subset of an OpenAPI 3.0 schema object. More fields may be added in the future as needed.

Text

type Text string

A Text is a piece of text, like a question or phrase.

Tool

type Tool struct {
	// Optional. One or more function declarations to be passed to the model along
	// with the current user query. Model may decide to call a subset of these
	// functions by populating [FunctionCall][content.part.function_call] in the
	// response. User should provide a
	// [FunctionResponse][content.part.function_response] for each function call
	// in the next turn. Based on the function responses, Model will generate the
	// final response back to the user. Maximum 64 function declarations can be
	// provided.
	FunctionDeclarations []*FunctionDeclaration
}

Tool details that the model may use to generate response.

A Tool is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.

Type

type Type int32

Type contains the list of OpenAPI data types as defined by https://swagger.io/docs/specification/data-models/data-types/

TypeUnspecified, TypeString, TypeNumber, TypeInteger, TypeBoolean, TypeArray, TypeObject

const (
	// TypeUnspecified means not specified, should not be used.
	TypeUnspecified Type = 0
	// TypeString means openAPI string type
	TypeString Type = 1
	// TypeNumber means openAPI number type
	TypeNumber Type = 2
	// TypeInteger means openAPI integer type
	TypeInteger Type = 3
	// TypeBoolean means openAPI boolean type
	TypeBoolean Type = 4
	// TypeArray means openAPI array type
	TypeArray Type = 5
	// TypeObject means openAPI object type
	TypeObject Type = 6
)

func (Type) String

func (v Type) String() string

UsageMetadata

type UsageMetadata struct {
	// Number of tokens in the request.
	PromptTokenCount int32
	// Number of tokens in the response(s).
	CandidatesTokenCount int32
	TotalTokenCount      int32
}

UsageMetadata is usage metadata about response(s).