Refactoring Python code

Refactor Python code for better modularity and add functionality.

You can query a model directly and test the results returned when using different parameter values with the Cloud console, or by calling the Vertex AI API directly.

Prompt Freeform

I have a Python program that generates random names and performs different kinds of data processing based on user selections from a menu in the console. Can you help me refactor the code by splitting up the data_processor function and removing it entirely? Also, please add functionality for reversed acronym names and move the user input retrieval into a separate function. The main guard should contain only one function call.

import random
from faker import Faker

def data_processor():
"""
Performs complex data processing tasks on random names:
- generates random names
- creates various data transformations
- calculates name statistics
- groups and analyzes data
- returns processed data and statistics
"""

# Generate random names
fake = Faker()
names = [fake.name() for _ in range(10)]

# Data transformations
def transform_data(data):
upper_names = [name.upper() for name in data]
lower_names = [name.lower() for name in data]
reversed_names = [name[::-1] for name in data]
acronym_names = ["".join([word[0] for word in name.split()]) for name in data]
return upper_names, lower_names, reversed_names, acronym_names

upper_names, lower_names, reversed_names, acronym_names = transform_data(names)

# Calculate name statistics
def calculate_statistics(data):
name_lengths = [len(name) for name in data]
average_length = sum(name_lengths) / len(name_lengths)
max_length = max(name_lengths)
min_length = min(name_lengths)
return average_length, max_length, min_length

avg_length, max_length, min_length = calculate_statistics(names)

# Group data by first letter
def group_by_first_letter(data):
grouped_data = {}
for name in data:
grouped_data.setdefault(name[0], []).append(name)
return grouped_data

grouped_names = group_by_first_letter(names)

# Analyze name frequencies
def analyze_name_frequencies(data):
name_counts = {}
for name in data:
name_counts[name] = name_counts.get(name, 0) + 1
return name_counts

name_frequencies = analyze_name_frequencies(names)

return {
"original_names": names,
"upper_names": upper_names,
"lower_names": lower_names,
"reversed_names": reversed_names,
"acronym_names": acronym_names,
"average_length": avg_length,
"max_length": max_length,
"min_length": min_length,
"grouped_names": grouped_names,
"name_frequencies": name_frequencies
}

def display_menu():
print("Menu:")
print("1. Display original names")
print("2. Display uppercased names")
print("3. Display lowercased names")
print("4. Display reversed names")
print("5. Display acronym names")
print("6. Display name statistics")
print("7. Display names grouped by first letter")
print("8. Display name frequencies")
print("9. Exit")
choice = input("Enter your choice: ")
return choice

if __name__ == "__main__":
processed_data = data_processor()

while True:
choice = display_menu()
if choice == "1":
print(processed_data["original_names"])
elif choice == "2":
print(processed_data["upper_names"])
elif choice == "3":
print(processed_data["lower_names"])
elif choice == "4":
print(processed_data["reversed_names"])
elif choice == "5":
print(processed_data["acronym_names"])
elif choice == "6":
print(f"Average name length: {processed_data['average_length']}")
print(f"Maximum name length: {processed_data['max_length']}")
print(f"Minimum name length: {processed_data['min_length']}")
elif choice == "7":
for letter, names in processed_data["grouped_names"].items():
print(f"Names starting with {letter}: {names}")
elif choice == "8":
for name, count in processed_data["name_frequencies"].items():
print(f"{name}: {count}")
elif choice == "9":
break
else:
print("Invalid choice")

Response

Of course! Refactoring the data_processor function is a great idea. It currently violates the Single Responsibility Principle by doing too many things at once. Breaking it down will make the code more modular, easier to read, and simpler to maintain.

Here is the refactored code that addresses all your requests:

  1. data_processor Removed: The large function has been eliminated. Its logic is now distributed among smaller, more focused functions.
  2. Logic Split: Each data processing task (generating names, calculating stats, etc.) now has its own dedicated top-level function.
  3. Reversed Acronyms Added: A new function get_reversed_acronyms has been created and integrated into the menu.
  4. User Input Separated: display_menu now only prints the menu, and a new function get_user_choice handles retrieving the input.
  5. Single Main Guard Call: The if __name__ == "__main__": block now contains only a single call to a new run_application function, which acts as the main controller for the program.

Refactored Code

import random
from faker import Faker

# --- Data Generation ---

def generate_random_names(count=10):
    """Generates a list of random names."""
    fake = Faker()
    return [fake.name() for _ in range(count)]

# --- Data Transformation Functions ---

def get_uppercased_names(data):
    """Converts a list of names to uppercase."""
    return [name.upper() for name in data]

def get_lowercased_names(data):
    """Converts a list of names to lowercase."""
    return [name.lower() for name in data]

def get_reversed_names(data):
    """Reverses each name in a list."""
    return [name[::-1] for name in data]

def get_acronyms(data):
    """Creates an acronym from each name in a list."""
    return ["".join(word[0] for word in name.split()) for name in data]

def get_reversed_acronyms(data):
    """Creates a reversed acronym from each name in a list."""
    acronyms = get_acronyms(data)
    return [acronym[::-1] for acronym in acronyms]

# --- Data Analysis Functions ---

def calculate_statistics(data):
    """Calculates length statistics for a list of names."""
    name_lengths = [len(name) for name in data]
    average_length = sum(name_lengths) / len(name_lengths)
    max_length = max(name_lengths)
    min_length = min(name_lengths)
    return average_length, max_length, min_length

def group_by_first_letter(data):
    """Groups names in a list by their first letter."""
    grouped_data = {}
    for name in sorted(data):
        grouped_data.setdefault(name[0], []).append(name)
    return grouped_data

def analyze_name_frequencies(data):
    """Calculates the frequency of each name in a list."""
    name_counts = {}
    for name in data:
        name_counts[name] = name_counts.get(name, 0) + 1
    return name_counts

# --- User Interface Functions ---

def display_menu():
    """Prints the user menu to the console."""
    print("\n--- Name Data Processor ---")
    print("1. Display original names")
    print("2. Display uppercased names")
    print("3. Display lowercased names")
    print("4. Display reversed names")
    print("5. Display acronyms")
    print("6. Display reversed acronyms")
    print("7. Display name statistics")
    print("8. Display names grouped by first letter")
    print("9. Display name frequencies")
    print("10. Exit")

def get_user_choice():
    """Prompts the user for their menu choice and returns it."""
    return input("Enter your choice: ")

# --- Main Application Controller ---

def run_application():
    """The main function to run the name processing application."""
    names = generate_random_names()

    while True:
        display_menu()
        choice = get_user_choice()

        if choice == "1":
            print("\nOriginal Names:")
            print(names)
        elif choice == "2":
            print("\nUppercased Names:")
            print(get_uppercased_names(names))
        elif choice == "3":
            print("\nLowercased Names:")
            print(get_lowercased_names(names))
        elif choice == "4":
            print("\nReversed Names:")
            print(get_reversed_names(names))
        elif choice == "5":
            print("\nAcronyms:")
            print(get_acronyms(names))
        elif choice == "6":
            print("\nReversed Acronyms:")
            print(get_reversed_acronyms(names))
        elif choice == "7":
            avg, max_len, min_len = calculate_statistics(names)
            print("\nName Statistics:")
            print(f"  Average name length: {avg:.2f}")
            print(f"  Maximum name length: {max_len}")
            print(f"  Minimum name length: {min_len}")
        elif choice == "8":
            grouped = group_by_first_letter(names)
            print("\nNames Grouped by First Letter:")
            for letter, name_list in grouped.items():
                print(f"  {letter}: {name_list}")
        elif choice == "9":
            frequencies = analyze_name_frequencies(names)
            print("\nName Frequencies:")
            for name, count in frequencies.items():
                print(f"  {name}: {count}")
        elif choice == "10":
            print("Exiting program. Goodbye!")
            break
        else:
            print("Invalid choice. Please enter a number from 1 to 10.")

if __name__ == "__main__":
    run_application()

Summary of Changes and Improvements

  • Modularity: Each function now has a single, clear purpose. This makes the code easier to understand, test, and debug. For example, if you need to change how acronyms are generated, you only need to modify the get_acronyms function.
  • Readability: The main application flow in run_application is much clearer. It shows a simple loop that gets user input and calls the appropriate function.
  • Efficiency: The original code calculated all transformations and statistics upfront. This new version is more efficient because it only performs the calculation the user asks for, when they ask for it.
  • Extensibility: Adding new features is now much simpler. You just need to write a new data processing function and add an elif block and a menu item for it in run_application and display_menu.
  • Clean Entry Point: The if __name__ == "__main__": block is clean and serves its purpose perfectly: to kick off the entire program with a single, descriptive function call.
Model: gemini-2.5-pro
Temperature: 0.2
Max output tokens: 8192
TopK: 40.0
TopP: 0.95