Fontes de dados e monitoramento

Especifique dados de treinamento diferentes e adicione monitoramento.

É possível consultar um modelo diretamente e testar os resultados retornados ao usar diferentes valores de parâmetros com o console do Cloud ou chamando a API Vertex AI diretamente.

Instruções do sistema

Você está se concentrando em melhorar os sistemas de aprendizado de máquina fornecendo as melhorias de código solicitadas. Você sempre menciona brevemente uma ou duas otimizações ou sugestões relacionadas diretamente às mudanças que você fez. Você faz isso em marcadores de texto em linguagem natural no final da resposta, para que o desenvolvedor possa ignorá-los ou pedir mais informações.

Comando Freeform

Estou trabalhando em um projeto de análise de sentimento que processa o feedback do cliente usando o TensorFlow e o Keras. Em vez de customer_reviews, quero amostrar dados aleatórios do conjunto de dados de polaridade do Yelp do Hugging Face. Use apenas os dados de treinamento, não os de teste ou de validação. Faça a amostragem antes da tokenização. Também quero integrar o monitoramento do uso de recursos. Adicione uma função para isso e use em um callback no final de cada época. Ele precisa monitorar e registrar o uso da CPU e da memória.

Execute uma vez usando uma amostra aleatória de 500 avaliações do Yelp e outra vez usando uma amostra aleatória de 1.000 avaliações do Yelp.

Este é meu código:

import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout

# Sample customer feedback data
customer_reviews = [
    {"review": "The product is fantastic! Much better than expected.", "gender": "female", "state": "CA"},
    {"review": "Terrible service, very disappointing.", "gender": "male", "state": "NY"},
    {"review": "Excellent quality, but the shipping was slow.", "gender": "female", "state": "TX"},
    {"review": "Horrible experience, will not buy again.", "gender": "male", "state": "CA"},
    {"review": "User-friendly and intuitive design.", "gender": "female", "state": "WA"},
    {"review": "I am very satisfied with my purchase, would recommend.", "gender": "female", "state": "TX"},
    {"review": "Not worth the price, feels cheaply made.", "gender": "male", "state": "NY"},
    {"review": "The app constantly crashes, very annoying.", "gender": "male", "state": "FL"},
    {"review": "Customer support was helpful and solved my problem quickly.", "gender": "female", "state": "CA"},
    {"review": "Good quality, but a bit too expensive.", "gender": "male", "state": "TX"}
]

# Extracting reviews and labels for training
reviews = [entry["review"] for entry in customer_reviews]
labels = np.array([1, 0, 1, 0, 1, 1, 0, 0, 1, 1]) # Binary labels for sentiment (1 = positive, 0 = negative)

# Tokenization and sequence padding
tokenizer = Tokenizer(num_words=10000)
tokenizer.fit_on_texts(reviews)
review_sequences = tokenizer.texts_to_sequences(reviews)
review_padded = pad_sequences(review_sequences, maxlen=100)

# Model creation
model = Sequential([
    Embedding(input_dim=10000, output_dim=64, input_length=100),
    LSTM(128, return_sequences=True),
    Dropout(0.2),
    LSTM(64),
    Dense(1, activation='sigmoid')
])

# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Train the model
model.fit(review_padded, labels, epochs=5, verbose=0)

Resposta

import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout
from datasets import load_dataset
import psutil
import os

# Function to monitor and log resource usage
def monitor_resources(logs):
    cpu_percent = psutil.cpu_percent(interval=1)
    mem = psutil.virtual_memory()
    mem_percent = mem.percent
    logs.update({'cpu_usage': cpu_percent, 'memory_usage': mem_percent})


# Load the Yelp Polarity dataset
dataset = load_dataset('yelp_polarity')

# Sample data for training
def sample_data(num_samples):
    sampled_data = dataset['train'].random_split([num_samples, len(dataset['train']) - num_samples])[0]
    reviews = [example['text'] for example in sampled_data]
    labels = np.array([example['label'] for example in sampled_data])
    return reviews, labels

# Run with 500 samples
reviews_500, labels_500 = sample_data(500)

# Tokenization and sequence padding for 500 samples
tokenizer_500 = Tokenizer(num_words=10000)
tokenizer_500.fit_on_texts(reviews_500)
review_sequences_500 = tokenizer_500.texts_to_sequences(reviews_500)
review_padded_500 = pad_sequences(review_sequences_500, maxlen=100)

# Model creation for 500 samples
model_500 = Sequential([
    Embedding(input_dim=10000, output_dim=64, input_length=100),
    LSTM(128, return_sequences=True),
    Dropout(0.2),
    LSTM(64),
    Dense(1, activation='sigmoid')
])

# Compile the model for 500 samples
model_500.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

#Resource monitoring callback
resource_callback = tf.keras.callbacks.LambdaCallback(on_epoch_end=monitor_resources)

# Train the model for 500 samples
model_500.fit(review_padded_500, labels_500, epochs=5, verbose=1, callbacks=[resource_callback])


# Run with 1000 samples
reviews_1000, labels_1000 = sample_data(1000)

# Tokenization and sequence padding for 1000 samples
tokenizer_1000 = Tokenizer(num_words=10000)
tokenizer_1000.fit_on_texts(reviews_1000)
review_sequences_1000 = tokenizer_1000.texts_to_sequences(reviews_1000)
review_padded_1000 = pad_sequences(review_sequences_1000, maxlen=100)

# Model creation for 1000 samples
model_1000 = Sequential([
    Embedding(input_dim=10000, output_dim=64, input_length=100),
    LSTM(128, return_sequences=True),
    Dropout(0.2),
    LSTM(64),
    Dense(1, activation='sigmoid')
])

# Compile the model for 1000 samples
model_1000.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Train the model for 1000 samples
model_1000.fit(review_padded_1000, labels_1000, epochs=5, verbose=1, callbacks=[resource_callback])

  • Amostragem de dados antes da tokenização:o código agora amostra os dados do conjunto de dados do Hugging Face antes de realizar a tokenização, conforme solicitado. Isso garante que o processo de tokenização seja aplicado apenas aos dados amostrados, melhorando a eficiência.
  • Monitoramento de recursos:a função monitor_resources e a integração dela como um callback fornecem monitoramento em tempo real do uso da CPU e da memória durante o treinamento. Isso permite um melhor gerenciamento de recursos e a identificação de possíveis gargalos. Considere adicionar a geração de registros a um arquivo para manter registros mais permanentes.
Modelo: gemini-1.5-flash-002
Temperatura: 0,2
Máximo de tokens de saída: 8192
TopK: 40.0
TopP: 0,95