API Text Embeddings

Este guia mostra como usar a API Text Embeddings para converter texto em vetores numéricos. Neste documento, discutimos os seguintes tópicos:

  • Sintaxe:chame a API usando cURL ou o SDK do Python.
  • Solicitação e resposta:saiba mais sobre os parâmetros de solicitação e resposta dos modelos de embedding de texto.
  • Exemplos:veja um exemplo de código que mostra como incorporar uma string de texto.
  • Próximas etapas:consulte a documentação relacionada.

A API Text Embeddings converte texto em vetores numéricos chamados embeddings. Essas representações vetoriais capturam o significado semântico e o contexto do texto.

Modelos com suporte:

Você pode obter embeddings de texto usando os seguintes modelos:

Nome do modelo Descrição Dimensões de saída Comprimento máximo da sequência Idiomas de texto compatíveis
gemini-embedding-001 Desempenho de ponta em tarefas de inglês, multilíngues e de código. Ele unifica os modelos especializados anteriores, como text-embedding-005 e text-multilingual-embedding-002, e alcança um desempenho melhor nos respectivos domínios. Leia nosso relatório técnico para mais detalhes. até 3072 2.048 tokens Idiomas de texto compatíveis
text-embedding-005 Especializado em tarefas de inglês e programação. até 768 2.048 tokens Inglês
text-multilingual-embedding-002 Especializado em tarefas multilíngues. até 768 2.048 tokens Idiomas de texto compatíveis

Para uma qualidade de incorporação superior, o gemini-embedding-001 é nosso modelo grande projetado para oferecer a melhor performance. O gemini-embedding-001 aceita uma instância por solicitação.

Sintaxe

curl

PROJECT_ID = PROJECT_ID
REGION = us-central1
MODEL_ID = MODEL_ID

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${REGION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${REGION}/publishers/google/models/${MODEL_ID}:predict -d \
  '{
    "instances": [
      ...
    ],
    "parameters": {
      ...
    }
  }'

Python

PROJECT_ID = PROJECT_ID
REGION = us-central1
MODEL_ID = MODEL_ID

import vertexai
from vertexai.language_models import TextEmbeddingModel

vertexai.init(project=PROJECT_ID, location=REGION)

model = TextEmbeddingModel.from_pretrained(MODEL_ID)
embeddings = model.get_embeddings(...)

Solicitação e resposta

Corpo da solicitação

{
  "instances": [
    {
      "task_type": "RETRIEVAL_DOCUMENT",
      "title": "document title",
      "content": "I would like embeddings for this text!"
    },
  ]
}

Parâmetros de solicitação

  • instances: obrigatório. Uma lista de objetos que contêm o texto a ser incorporado. Os seguintes campos são compatíveis:
    • content (string): o texto para gerar embeddings.
    • task_type (string): opcional. Especifica o aplicativo downstream pretendido para ajudar o modelo a produzir embeddings de melhor qualidade. Se você não especificar um valor, o padrão será RETRIEVAL_QUERY. Para mais informações sobre tipos de tarefas, consulte Escolher um tipo de tarefa de embeddings.
    • title (string): opcional. Um título para o conteúdo de texto. Esse campo só é aplicado quando task_type é RETRIEVAL_DOCUMENT.
  • parameters: opcional. Um objeto que contém os seguintes campos:
    • autoTruncate (bool): se true, o texto de entrada será truncado se for maior que o comprimento máximo do modelo. Se false, um erro será retornado para entrada grande demais. O padrão é true.
    • outputDimensionality (int): o tamanho de embedding desejado. Se definido, os embeddings de saída serão truncados nessa dimensão.

Tipos de tarefa

A tabela a seguir descreve os valores do parâmetro task_type e os casos de uso deles:

task_type Descrição Caso de uso
RETRIEVAL_QUERY O texto de entrada é uma consulta em uma configuração de pesquisa ou recuperação. Usado para o texto da consulta ao pesquisar uma coleção de documentos. Pareie com RETRIEVAL_DOCUMENT para os documentos.
RETRIEVAL_DOCUMENT O texto de entrada é um documento em uma configuração de pesquisa ou recuperação. Usado para os documentos em uma coleção que serão pesquisados. Use com RETRIEVAL_QUERY para a consulta de pesquisa.
SEMANTIC_SIMILARITY O texto de entrada é usado para similaridade textual semântica (STS). Comparar dois trechos de texto para determinar a similaridade de significado.
CLASSIFICATION O embedding será usado para tarefas de classificação. Treinar um modelo para categorizar texto em classes predefinidas.
CLUSTERING O embedding será usado para tarefas de clustering. Agrupar textos semelhantes sem rótulos predefinidos.
QUESTION_ANSWERING O texto de entrada é uma consulta para um sistema de resposta a perguntas. Encontrar respostas para perguntas em um conjunto de documentos. Use RETRIEVAL_DOCUMENT para os documentos.
FACT_VERIFICATION O texto de entrada é uma declaração a ser verificada em relação a um conjunto de documentos. Verificar a precisão factual de uma declaração. Use RETRIEVAL_DOCUMENT para os documentos.
CODE_RETRIEVAL_QUERY O texto de entrada é uma consulta para recuperar snippets de código relevantes (Java e Python). Pesquisar uma base de código por funções ou snippets relevantes. Use RETRIEVAL_DOCUMENT para os documentos de código.
  • Tarefas de recuperação:
    • Consulta: use task_type=RETRIEVAL_QUERY para o texto de entrada que é uma consulta de pesquisa.
    • Corpus: use task_type=RETRIEVAL_DOCUMENT para o texto de entrada que faz parte da coleção de documentos pesquisada.
  • Tarefas de similaridade:
    • Similaridade semântica: use task_type=SEMANTIC_SIMILARITY para os dois textos de entrada e avalie a similaridade geral de significado.
  • Observação: o SEMANTIC_SIMILARITY não foi criado para casos de uso de recuperação, como pesquisa de documentos e recuperação de informações. Para esses casos de uso, use RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, QUESTION_ANSWERING e FACT_VERIFICATION.

Corpo da resposta

{
  "predictions": [
    {
      "embeddings": {
        "statistics": {
          "truncated": boolean,
          "token_count": integer
        },
        "values": [ number ]
      }
    }
  ]
}

Parâmetros de resposta

  • predictions: uma lista de objetos, em que cada objeto corresponde a uma instância de entrada da solicitação. Cada objeto contém o seguinte campo:
    • embeddings: o embedding gerado com base no texto de entrada. Ele contém os seguintes campos:
      • values: uma lista de números de ponto flutuante que representa o vetor de embedding do texto de entrada.
      • statistics: as estatísticas calculadas a partir do texto de entrada. Ele contém os seguintes campos:
        • truncated (bool): true se o texto de entrada foi truncado por ser maior que o número máximo de tokens permitido pelo modelo.
        • token_count (int): o número de tokens no texto de entrada.

Exemplo de resposta

{
  "predictions": [
    {
      "embeddings": {
        "values": [
          0.0058424929156899452,
          0.011848051100969315,
          0.032247550785541534,
          -0.031829461455345154,
          -0.055369812995195389,
          ...
        ],
        "statistics": {
          "token_count": 4,
          "truncated": false
        }
      }
    }
  ]
}

Exemplos

Incorporar uma string de texto

O exemplo a seguir mostra como receber o embedding de uma string de texto.

REST

Depois de configurou seu ambiente use REST para testar uma solicitação de texto. O exemplo a seguir envia uma solicitação ao publisher endpoint do modelo.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • PROJECT_ID: o ID do projeto.
  • TEXT: o texto ao qual você quer gerar embeddings. Limite: cinco textos de até 2.048 tokens por texto para todos os modelos, exceto textembedding-gecko@001. O comprimento máximo do token de entrada para textembedding-gecko@001 é 3.072. Para gemini-embedding-001, cada solicitação só pode incluir um texto de entrada. Para mais informações, consulte Limites de embeddings de texto.
  • AUTO_TRUNCATE: se definido como false, o texto que exceder o limite de tokens fará com que a solicitação falhe. O valor padrão é true.

Método HTTP e URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-embedding-001:predict

Corpo JSON da solicitação:

{
  "instances": [
    { "content": "TEXT"}
  ],
  "parameters": { 
    "autoTruncate": AUTO_TRUNCATE 
  }
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-embedding-001:predict"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-embedding-001:predict" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a seguinte. Observe que values foi truncado para economizar espaço.

Observe o seguinte no URL deste exemplo:
  • Use o generateContent para solicitar que a resposta seja retornada depois de ser totalmente gerada. Para reduzir a percepção de latência ao público humano, transmita a resposta à medida que geradas usando o streamGenerateContent .
  • O ID do modelo multimodal está localizado no final do URL, antes do método Por exemplo, gemini-2.0-flash). Este exemplo pode oferecer suporte a outros modelos de classificação.

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

from __future__ import annotations

from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel


def embed_text() -> list[list[float]]:
    """Embeds texts with a pre-trained, foundational model.

    Returns:
        A list of lists containing the embedding vectors for each input text
    """

    # A list of texts to be embedded.
    texts = ["banana muffins? ", "banana bread? banana muffins?"]
    # The dimensionality of the output embeddings.
    dimensionality = 3072
    # The task type for embedding. Check the available tasks in the model's documentation.
    task = "RETRIEVAL_DOCUMENT"

    model = TextEmbeddingModel.from_pretrained("gemini-embedding-001")
    kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}

    embeddings = []
    # gemini-embedding-001 takes one input at a time
    for text in texts:
        text_input = TextEmbeddingInput(text, task)
        embedding = model.get_embeddings([text_input], **kwargs)
        print(embedding)
        # Example response:
        # [[0.006135190837085247, -0.01462465338408947, 0.004978656303137541, ...]]
        embeddings.append(embedding[0].values)

    return embeddings

Go

Antes de testar esse exemplo, siga as instruções de configuração para Go no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	"cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// embedTexts shows how embeddings are set for gemini-embedding-001 model
func embedTexts(w io.Writer, project, location string) error {
	// location := "us-central1"
	ctx := context.Background()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	dimensionality := 3072
	model := "gemini-embedding-001"
	texts := []string{"banana muffins? ", "banana bread? banana muffins?"}

	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return err
	}
	defer client.Close()

	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)
	allEmbeddings := make([][]float32, 0, len(texts))
	// gemini-embedding-001 takes 1 input at a time
	for _, text := range texts {
		instances := make([]*structpb.Value, 1)
		instances[0] = structpb.NewStructValue(&structpb.Struct{
			Fields: map[string]*structpb.Value{
				"content":   structpb.NewStringValue(text),
				"task_type": structpb.NewStringValue("QUESTION_ANSWERING"),
			},
		})

		params := structpb.NewStructValue(&structpb.Struct{
			Fields: map[string]*structpb.Value{
				"outputDimensionality": structpb.NewNumberValue(float64(dimensionality)),
			},
		})

		req := &aiplatformpb.PredictRequest{
			Endpoint:   endpoint,
			Instances:  instances,
			Parameters: params,
		}
		resp, err := client.Predict(ctx, req)
		if err != nil {
			return err
		}

		// Process the prediction for the single text
		// The response will contain one prediction because we sent one instance.
		if len(resp.Predictions) == 0 {
			return fmt.Errorf("no predictions returned for text \"%s\"", text)
		}

		prediction := resp.Predictions[0]
		embeddingValues := prediction.GetStructValue().Fields["embeddings"].GetStructValue().Fields["values"].GetListValue().Values

		currentEmbedding := make([]float32, len(embeddingValues))
		for j, value := range embeddingValues {
			currentEmbedding[j] = float32(value.GetNumberValue())
		}
		allEmbeddings = append(allEmbeddings, currentEmbedding)
	}

	if len(allEmbeddings) > 0 {
		fmt.Fprintf(w, "Dimensionality: %d. Embeddings length: %d", len(allEmbeddings[0]), len(allEmbeddings))
	} else {
		fmt.Fprintln(w, "No texts were processed.")
	}
	return nil
}

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import static java.util.stream.Collectors.toList;

import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictRequest;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Struct;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.OptionalInt;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class PredictTextEmbeddingsSample {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // Details about text embedding request structure and supported models are available in:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    String project = "YOUR_PROJECT_ID";
    String model = "gemini-embedding-001";
    predictTextEmbeddings(
        endpoint,
        project,
        model,
        List.of("banana bread?", "banana muffins?"),
        "QUESTION_ANSWERING",
        OptionalInt.of(3072));
  }

  // Gets text embeddings from a pretrained, foundational model.
  public static List<List<Float>> predictTextEmbeddings(
      String endpoint,
      String project,
      String model,
      List<String> texts,
      String task,
      OptionalInt outputDimensionality)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();
    Matcher matcher = Pattern.compile("^(?<Location>\\w+-\\w+)").matcher(endpoint);
    String location = matcher.matches() ? matcher.group("Location") : "us-central1";
    EndpointName endpointName =
        EndpointName.ofProjectLocationPublisherModelName(project, location, "google", model);

    List<List<Float>> floats = new ArrayList<>();
    // You can use this prediction service client for multiple requests.
    try (PredictionServiceClient client = PredictionServiceClient.create(settings)) {
      // gemini-embedding-001 takes one input at a time.
      for (int i = 0; i < texts.size(); i++) {
        PredictRequest.Builder request = 
            PredictRequest.newBuilder().setEndpoint(endpointName.toString());
        if (outputDimensionality.isPresent()) {
          request.setParameters(
              Value.newBuilder()
                  .setStructValue(
                      Struct.newBuilder()
                          .putFields(
                              "outputDimensionality", valueOf(outputDimensionality.getAsInt()))
                          .build()));
        }
        request.addInstances(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("content", valueOf(texts.get(i)))
                        .putFields("task_type", valueOf(task))
                        .build()));
        PredictResponse response = client.predict(request.build());

        for (Value prediction : response.getPredictionsList()) {
          Value embeddings = prediction.getStructValue().getFieldsOrThrow("embeddings");
          Value values = embeddings.getStructValue().getFieldsOrThrow("values");
          floats.add(
              values.getListValue().getValuesList().stream()
                  .map(Value::getNumberValue)
                  .map(Double::floatValue)
                  .collect(toList()));
        }
      }
      return floats;
    }
  }

  private static Value valueOf(String s) {
    return Value.newBuilder().setStringValue(s).build();
  }

  private static Value valueOf(int n) {
    return Value.newBuilder().setNumberValue(n).build();
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

async function main(
  project,
  model = 'gemini-embedding-001',
  texts = 'banana bread?;banana muffins?',
  task = 'QUESTION_ANSWERING',
  dimensionality = 0,
  apiEndpoint = 'us-central1-aiplatform.googleapis.com'
) {
  const aiplatform = require('@google-cloud/aiplatform');
  const {PredictionServiceClient} = aiplatform.v1;
  const {helpers} = aiplatform; // helps construct protobuf.Value objects.
  const clientOptions = {apiEndpoint: apiEndpoint};
  const location = 'us-central1';
  const endpoint = `projects/${project}/locations/${location}/publishers/google/models/${model}`;

  async function callPredict() {
    const instances = texts
      .split(';')
      .map(e => helpers.toValue({content: e, task_type: task}));

    const client = new PredictionServiceClient(clientOptions);
    const parameters = helpers.toValue(
      dimensionality > 0 ? {outputDimensionality: parseInt(dimensionality)} : {}
    );
    const allEmbeddings = []
    // gemini-embedding-001 takes one input at a time.
    for (const instance of instances) {
      const request = {endpoint, instances: [instance], parameters};
      const [response] = await client.predict(request);
      const predictions = response.predictions;

      const embeddings = predictions.map(p => {
        const embeddingsProto = p.structValue.fields.embeddings;
        const valuesProto = embeddingsProto.structValue.fields.values;
        return valuesProto.listValue.values.map(v => v.numberValue);
      });

      allEmbeddings.push(embeddings[0])
    }


    console.log('Got embeddings: \n' + JSON.stringify(allEmbeddings));
  }

  callPredict();
}

Idiomas de texto compatíveis

Todos os modelos de embedding de texto são compatíveis com texto em inglês e foram avaliados nesse idioma.

O modelo text-multilingual-embedding-002 também é compatível com os seguintes idiomas: Ele foi avaliado nos idiomas da lista Idiomas avaliados.

  • Idiomas avaliados: Arabic (ar), Bengali (bn), English (en), Spanish (es), German (de), Persian (fa), Finnish (fi), French (fr), Hindi (hi), Indonesian (id), Japanese (ja), Korean (ko), Russian (ru), Swahili (sw), Telugu (te), Thai (th), Yoruba (yo), Chinese (zh)
  • Idiomas disponíveis: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusiasn, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.

O modelo gemini-embedding-001 é compatível com os seguintes idiomas:

Arabic, Bengali, Bulgarian, Chinese (Simplified and Traditional), Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek, Hebrew, Hindi, Hungarian, Indonesian, Italian, Japanese, Korean, Latvian, Lithuanian, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Spanish, Swahili, Swedish, Thai, Turkish, Ukrainian, Vietnamese, Afrikaans, Amharic, Assamese, Azerbaijani, Belarusian, Bosnian, Catalan, Cebuano, Corsican, Welsh, Dhivehi, Esperanto, Basque, Persian, Filipino (Tagalog), Frisian, Irish, Scots Gaelic, Galician, Gujarati, Hausa, Hawaiian, Hmong, Haitian Creole, Armenian, Igbo, Icelandic, Javanese, Georgian, Kazakh, Khmer, Kannada, Krio, Kurdish, Kyrgyz, Latin, Luxembourgish, Lao, Malagasy, Maori, Macedonian, Malayalam, Mongolian, Meiteilon (Manipuri), Marathi, Malay, Maltese, Myanmar (Burmese), Nepali, Nyanja (Chichewa), Odia (Oriya), Punjabi, Pashto, Sindhi, Sinhala (Sinhalese), Samoan, Shona, Somali, Albanian, Sesotho, Sundanese, Tamil, Telugu, Tajik, Uyghur, Urdu, Uzbek, Xhosa, Yiddish, Yoruba, Catalan.Zulu

Versões do modelo

Para usar um modelo estável atual, especifique o número da versão do modelo, por exemplo, gemini-embedding-001.

Não é recomendável especificar um modelo sem um número de versão porque ele é um ponteiro legado para outro modelo e não é estável.

Para mais informações, consulte Versões e ciclo de vida do modelo.

A seguir

Saiba mais sobre embeddings de texto: