Text embeddings API

Text embeddings API は、テキストデータを数値ベクトルに変換します。これらのベクトル表現は、対象となる単語の意味とコンテキストを捉えて表現するように設計されています。

サポートされているモデル:

英語モデル 多言語モデル
textembedding-gecko@001 textembedding-gecko-multilingual@001
textembedding-gecko@003 text-multilingual-embedding-002
text-embedding-004
text-embedding-005

構文

curl

PROJECT_ID = PROJECT_ID
REGION = us-central1
MODEL_ID = MODEL_ID

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${REGION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${REGION}/publishers/google/models/${MODEL_ID}:predict -d \
  '{
    "instances": [
      ...
    ],
    "parameters": {
      ...
    }
  }'

Python

PROJECT_ID = PROJECT_ID
REGION = us-central1
MODEL_ID = MODEL_ID

import vertexai
from vertexai.language_models import TextEmbeddingModel

vertexai.init(project=PROJECT_ID, location=REGION)

model = TextEmbeddingModel.from_pretrained(MODEL_ID)
embeddings = model.get_embeddings(...)

パラメータ リスト

パラメータ

texts

list of union[string, TextEmbeddingInput]

各インスタンスは、エンベディングされる 1 つのテキストを表します。

TextEmbeddingInput

string

エンベディングを生成するテキスト。

auto_truncate

省略可: bool

true に設定すると、入力テキストは切り捨てられます。false に設定すると、入力テキストがモデルでサポートされている最大長を超えている場合、エラーが返されます。デフォルトは true です。

output_dimensionality

省略可: int

出力エンベディングのサイズを指定するために使用します。設定すると、出力エンベディングは指定されたサイズに切り捨てられます。

リクエストの本文

{
  "instances": [
    { 
      "task_type": "RETRIEVAL_DOCUMENT",
      "title": "document title",
      "content": "I would like embeddings for this text!"
    },
  ]
}
パラメータ

content

string

エンベディングを生成するテキスト。

task_type

省略可: string

モデルがより優れたエンベディングを生成できるように、対象となるダウンストリーム アプリケーションを伝えるために使用されます。空白のままにすると、デフォルトの RETRIEVAL_QUERY が使用されます。

  • RETRIEVAL_QUERY
  • RETRIEVAL_DOCUMENT
  • SEMANTIC_SIMILARITY
  • CLASSIFICATION
  • CLUSTERING
  • QUESTION_ANSWERING
  • FACT_VERIFICATION
  • CODE_RETRIEVAL_QUERY

textembedding-gecko@001 モデルでは、task_type パラメータはサポートされていません。

タスクタイプの詳細については、エンベディングのタスクタイプを選択するをご覧ください。

title

省略可: string

モデルがより良いエンベディングを生成できるようにするために使用されます。task_type=RETRIEVAL_DOCUMENT でのみ有効です。

taskType

次の表に、task_type パラメータ値とその使用例を示します。

task_type 説明
RETRIEVAL_QUERY 指定したテキストが検索または取得設定のクエリであることを指定します。
RETRIEVAL_DOCUMENT 指定したテキストが検索または取得設定のドキュメントであることを指定します。
SEMANTIC_SIMILARITY 指定したテキストが意味的テキスト類似性(STS)で使用されることを指定します。
CLASSIFICATION エンベディングが分類に使用されることを指定します。
CLUSTERING エンベディングがクラスタリングに使用されることを指定します。
QUESTION_ANSWERING クエリ エンベディングが質問への回答に使用されることを指定します。ドキュメント側には RETRIEVAL_DOCUMENT を使用します。
FACT_VERIFICATION クエリ エンベディングが事実確認に使用されることを指定します。
CODE_RETRIEVAL_QUERY クエリ エンベディングが Java と Python のコード取得に使用されることを指定します。

取得タスク:

クエリ: 入力テキストが検索クエリであることを示すには、task_type=RETRIEVAL_QUERY を使用します。コーパス: 入力テキストが検索対象のドキュメント コレクションの一部であることを示すには、task_type=RETRIEVAL_DOCUMENT を使用します。

類似タスク:

意味的類似性: 両方の入力テキストに task_type= SEMANTIC_SIMILARITY を使用して、全体的な意味の類似性を評価します。

レスポンス本文

{
  "predictions": [
    {
      "embeddings": {
        "statistics": {
          "truncated": boolean,
          "token_count": integer
        },
        "values": [ number ]
      }
    }
  ]
}
レスポンス要素 説明
embeddings 入力テキストから生成された結果。
statistics 入力テキストから計算された統計値。
truncated 入力テキストが最大許容トークン数より長く、切り捨てられたかどうかを示します。
tokenCount 入力テキストのトークンの数。
values values フィールドには、入力テキストの単語に対応するエンベディング ベクトルが含まれます。

レスポンスの例

{
  "predictions": [
    {
      "embeddings": {
        "values": [
          0.0058424929156899452,
          0.011848051100969315,
          0.032247550785541534,
          -0.031829461455345154,
          -0.055369812995195389,
          ...
        ],
        "statistics": {
          "token_count": 4,
          "truncated": false
        }
      }
    }
  ]
}

テキスト文字列を埋め込む

基本的なユースケース

次の例は、テキスト文字列のエンベディングを取得する方法を示しています。

REST

環境をセットアップしたら、REST を使用してテキスト プロンプトをテストできます。次のサンプルは、パブリッシャー モデルのエンドポイントにリクエストを送信します。

リクエストのデータを使用する前に、次のように置き換えます。

  • PROJECT_ID: 実際のプロジェクト ID
  • TEXT: エンベディングを生成するテキスト。上限: textembedding-gecko@001 を除くすべてのモデルで、5 テキスト(1 テキストあたり最大 2,048 トークン)。textembedding-gecko@001 の最大入力トークン長は 3,072 です。
  • AUTO_TRUNCATE: false に設定した場合、テキストがトークンの上限を超えると、リクエストが失敗します。デフォルト値は true です。

HTTP メソッドと URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-004:predict

リクエストの本文(JSON):

{
  "instances": [
    { "content": "TEXT"}
  ],
  "parameters": { 
    "autoTruncate": AUTO_TRUNCATE 
  }
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-004:predict"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-004:predict" | Select-Object -Expand Content

次のような JSON レスポンスが返されます。容量を節約するために、values は切り捨てられています。

このサンプルの URL にある次の点に注意してください。
  • generateContent メソッドを使用して、レスポンスが完全に生成された後に返されるようにリクエストします。ユーザーが認識するレイテンシを短縮するには、streamGenerateContent メソッドを使用して、生成時にレスポンスをストリーミングします。
  • マルチモーダル モデル ID は、URL の末尾のメソッドの前に配置されます(例: gemini-1.5-flashgemini-1.0-pro-vision)。このサンプルでは、他のモデルもサポートされている場合があります。

Python

Vertex AI SDK for Python のインストールまたは更新の方法については、Vertex AI SDK for Python をインストールするをご覧ください。 詳細については、Python API リファレンス ドキュメントをご覧ください。

from __future__ import annotations

from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel


def embed_text() -> list[list[float]]:
    """Embeds texts with a pre-trained, foundational model.

    Returns:
        A list of lists containing the embedding vectors for each input text
    """

    # A list of texts to be embedded.
    texts = ["banana muffins? ", "banana bread? banana muffins?"]
    # The dimensionality of the output embeddings.
    dimensionality = 256
    # The task type for embedding. Check the available tasks in the model's documentation.
    task = "RETRIEVAL_DOCUMENT"

    model = TextEmbeddingModel.from_pretrained("text-embedding-005")
    inputs = [TextEmbeddingInput(text, task) for text in texts]
    kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}
    embeddings = model.get_embeddings(inputs, **kwargs)

    print(embeddings)
    # Example response:
    # [[0.006135190837085247, -0.01462465338408947, 0.004978656303137541, ...], [0.1234434666, ...]],
    return [embedding.values for embedding in embeddings]

Go

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Go の設定手順を完了してください。詳細については、Vertex AI Go API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	"cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// embedTexts shows how embeddings are set for text-embedding-005 model
func embedTexts(w io.Writer, project, location string) error {
	// location := "us-central1"
	ctx := context.Background()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	dimensionality := 5
	model := "text-embedding-005"
	texts := []string{"banana muffins? ", "banana bread? banana muffins?"}

	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return err
	}
	defer client.Close()

	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)
	instances := make([]*structpb.Value, len(texts))
	for i, text := range texts {
		instances[i] = structpb.NewStructValue(&structpb.Struct{
			Fields: map[string]*structpb.Value{
				"content":   structpb.NewStringValue(text),
				"task_type": structpb.NewStringValue("QUESTION_ANSWERING"),
			},
		})
	}

	params := structpb.NewStructValue(&structpb.Struct{
		Fields: map[string]*structpb.Value{
			"outputDimensionality": structpb.NewNumberValue(float64(dimensionality)),
		},
	})

	req := &aiplatformpb.PredictRequest{
		Endpoint:   endpoint,
		Instances:  instances,
		Parameters: params,
	}
	resp, err := client.Predict(ctx, req)
	if err != nil {
		return err
	}
	embeddings := make([][]float32, len(resp.Predictions))
	for i, prediction := range resp.Predictions {
		values := prediction.GetStructValue().Fields["embeddings"].GetStructValue().Fields["values"].GetListValue().Values
		embeddings[i] = make([]float32, len(values))
		for j, value := range values {
			embeddings[i][j] = float32(value.GetNumberValue())
		}
	}

	fmt.Fprintf(w, "Dimensionality: %d. Embeddings length: %d", len(embeddings[0]), len(embeddings))
	return nil
}

Java

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import static java.util.stream.Collectors.toList;

import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictRequest;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Struct;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.OptionalInt;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class PredictTextEmbeddingsSample {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // Details about text embedding request structure and supported models are available in:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    String project = "YOUR_PROJECT_ID";
    String model = "text-embedding-005";
    predictTextEmbeddings(
        endpoint,
        project,
        model,
        List.of("banana bread?", "banana muffins?"),
        "QUESTION_ANSWERING",
        OptionalInt.of(256));
  }

  // Gets text embeddings from a pretrained, foundational model.
  public static List<List<Float>> predictTextEmbeddings(
      String endpoint,
      String project,
      String model,
      List<String> texts,
      String task,
      OptionalInt outputDimensionality)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();
    Matcher matcher = Pattern.compile("^(?<Location>\\w+-\\w+)").matcher(endpoint);
    String location = matcher.matches() ? matcher.group("Location") : "us-central1";
    EndpointName endpointName =
        EndpointName.ofProjectLocationPublisherModelName(project, location, "google", model);

    // You can use this prediction service client for multiple requests.
    try (PredictionServiceClient client = PredictionServiceClient.create(settings)) {
      PredictRequest.Builder request =
          PredictRequest.newBuilder().setEndpoint(endpointName.toString());
      if (outputDimensionality.isPresent()) {
        request.setParameters(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("outputDimensionality", valueOf(outputDimensionality.getAsInt()))
                        .build()));
      }
      for (int i = 0; i < texts.size(); i++) {
        request.addInstances(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("content", valueOf(texts.get(i)))
                        .putFields("task_type", valueOf(task))
                        .build()));
      }
      PredictResponse response = client.predict(request.build());
      List<List<Float>> floats = new ArrayList<>();
      for (Value prediction : response.getPredictionsList()) {
        Value embeddings = prediction.getStructValue().getFieldsOrThrow("embeddings");
        Value values = embeddings.getStructValue().getFieldsOrThrow("values");
        floats.add(
            values.getListValue().getValuesList().stream()
                .map(Value::getNumberValue)
                .map(Double::floatValue)
                .collect(toList()));
      }
      return floats;
    }
  }

  private static Value valueOf(String s) {
    return Value.newBuilder().setStringValue(s).build();
  }

  private static Value valueOf(int n) {
    return Value.newBuilder().setNumberValue(n).build();
  }
}

Node.js

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

async function main(
  project,
  model = 'text-embedding-005',
  texts = 'banana bread?;banana muffins?',
  task = 'QUESTION_ANSWERING',
  dimensionality = 0,
  apiEndpoint = 'us-central1-aiplatform.googleapis.com'
) {
  const aiplatform = require('@google-cloud/aiplatform');
  const {PredictionServiceClient} = aiplatform.v1;
  const {helpers} = aiplatform; // helps construct protobuf.Value objects.
  const clientOptions = {apiEndpoint: apiEndpoint};
  const location = 'us-central1';
  const endpoint = `projects/${project}/locations/${location}/publishers/google/models/${model}`;

  async function callPredict() {
    const instances = texts
      .split(';')
      .map(e => helpers.toValue({content: e, task_type: task}));
    const parameters = helpers.toValue(
      dimensionality > 0 ? {outputDimensionality: parseInt(dimensionality)} : {}
    );
    const request = {endpoint, instances, parameters};
    const client = new PredictionServiceClient(clientOptions);
    const [response] = await client.predict(request);
    const predictions = response.predictions;
    const embeddings = predictions.map(p => {
      const embeddingsProto = p.structValue.fields.embeddings;
      const valuesProto = embeddingsProto.structValue.fields.values;
      return valuesProto.listValue.values.map(v => v.numberValue);
    });
    console.log('Got embeddings: \n' + JSON.stringify(embeddings));
  }

  callPredict();
}

上級者向けのユースケース

次の例では、高度な機能をいくつか示します。

  • task_typetitle を使用してエンベディングの品質を改善します。
  • パラメータを使用して API の動作を制御します。

REST

リクエストのデータを使用する前に、次のように置き換えます。

  • PROJECT_ID: 実際のプロジェクト ID
  • TEXT: エンベディングを生成するテキスト。上限: 5 テキスト(1 テキストあたり最大 3,072 トークン)。
  • TASK_TYPE: モデルが優れたエンベディングを生成できるように、対象のダウンストリーム アプリケーションを伝えるために使用されます。
  • TITLE: モデルがより優れたエンベディングを生成できるようにするために使用されます。
  • AUTO_TRUNCATE: false に設定した場合、テキストがトークンの上限を超えると、リクエストが失敗します。デフォルト値は true です。
  • OUTPUT_DIMENSIONALITY: 出力エンベディング サイズの指定に使用します。設定すると、出力エンベディングは指定されたサイズに切り捨てられます。

HTTP メソッドと URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/textembedding-gecko@003:predict

リクエストの本文(JSON):

{
  "instances": [
    { "content": "TEXT",
      "task_type": "TASK_TYPE",
      "title": "TITLE"
    },
  ],
  "parameters": {
    "autoTruncate": AUTO_TRUNCATE,
    "outputDimensionality": OUTPUT_DIMENSIONALITY
  }
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/textembedding-gecko@003:predict"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/textembedding-gecko@003:predict" | Select-Object -Expand Content

次のような JSON レスポンスが返されます。容量を節約するために、values は切り捨てられています。

Python

Vertex AI SDK for Python のインストールまたは更新の方法については、Vertex AI SDK for Python をインストールするをご覧ください。 詳細については、Python API リファレンス ドキュメントをご覧ください。

import re

from google.cloud.aiplatform import initializer as aiplatform_init
from vertexai.language_models import TextEmbeddingModel


def tune_embedding_model(
    api_endpoint: str,
    base_model_name: str = "text-embedding-005",
    corpus_path: str = "gs://cloud-samples-data/ai-platform/embedding/goog-10k-2024/r11/corpus.jsonl",
    queries_path: str = "gs://cloud-samples-data/ai-platform/embedding/goog-10k-2024/r11/queries.jsonl",
    train_label_path: str = "gs://cloud-samples-data/ai-platform/embedding/goog-10k-2024/r11/train.tsv",
    test_label_path: str = "gs://cloud-samples-data/ai-platform/embedding/goog-10k-2024/r11/test.tsv",
):  # noqa: ANN201
    """Tune an embedding model using the specified parameters.
    Args:
        api_endpoint (str): The API endpoint for the Vertex AI service.
        base_model_name (str): The name of the base model to use for tuning.
        corpus_path (str): GCS URI of the JSONL file containing the corpus data.
        queries_path (str): GCS URI of the JSONL file containing the queries data.
        train_label_path (str): GCS URI of the TSV file containing the training labels.
        test_label_path (str): GCS URI of the TSV file containing the test labels.
    """
    match = re.search(r"^(\w+-\w+)", api_endpoint)
    location = match.group(1) if match else "us-central1"
    base_model = TextEmbeddingModel.from_pretrained(base_model_name)
    tuning_job = base_model.tune_model(
        task_type="DEFAULT",
        corpus_data=corpus_path,
        queries_data=queries_path,
        training_data=train_label_path,
        test_data=test_label_path,
        batch_size=128,  # The batch size to use for training.
        train_steps=1000,  # The number of training steps.
        tuned_model_location=location,
        output_dimensionality=768,  # The dimensionality of the output embeddings.
        learning_rate_multiplier=1.0,  # The multiplier for the learning rate.
    )
    return tuning_job

Go

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Go の設定手順を完了してください。詳細については、Vertex AI Go API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	"cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// embedTexts shows how embeddings are set for text-embedding-005 model
func embedTexts(w io.Writer, project, location string) error {
	// location := "us-central1"
	ctx := context.Background()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	dimensionality := 5
	model := "text-embedding-005"
	texts := []string{"banana muffins? ", "banana bread? banana muffins?"}

	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return err
	}
	defer client.Close()

	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)
	instances := make([]*structpb.Value, len(texts))
	for i, text := range texts {
		instances[i] = structpb.NewStructValue(&structpb.Struct{
			Fields: map[string]*structpb.Value{
				"content":   structpb.NewStringValue(text),
				"task_type": structpb.NewStringValue("QUESTION_ANSWERING"),
			},
		})
	}

	params := structpb.NewStructValue(&structpb.Struct{
		Fields: map[string]*structpb.Value{
			"outputDimensionality": structpb.NewNumberValue(float64(dimensionality)),
		},
	})

	req := &aiplatformpb.PredictRequest{
		Endpoint:   endpoint,
		Instances:  instances,
		Parameters: params,
	}
	resp, err := client.Predict(ctx, req)
	if err != nil {
		return err
	}
	embeddings := make([][]float32, len(resp.Predictions))
	for i, prediction := range resp.Predictions {
		values := prediction.GetStructValue().Fields["embeddings"].GetStructValue().Fields["values"].GetListValue().Values
		embeddings[i] = make([]float32, len(values))
		for j, value := range values {
			embeddings[i][j] = float32(value.GetNumberValue())
		}
	}

	fmt.Fprintf(w, "Dimensionality: %d. Embeddings length: %d", len(embeddings[0]), len(embeddings))
	return nil
}

Java

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

import static java.util.stream.Collectors.toList;

import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictRequest;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Struct;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.OptionalInt;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class PredictTextEmbeddingsSample {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // Details about text embedding request structure and supported models are available in:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    String project = "YOUR_PROJECT_ID";
    String model = "text-embedding-005";
    predictTextEmbeddings(
        endpoint,
        project,
        model,
        List.of("banana bread?", "banana muffins?"),
        "QUESTION_ANSWERING",
        OptionalInt.of(256));
  }

  // Gets text embeddings from a pretrained, foundational model.
  public static List<List<Float>> predictTextEmbeddings(
      String endpoint,
      String project,
      String model,
      List<String> texts,
      String task,
      OptionalInt outputDimensionality)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();
    Matcher matcher = Pattern.compile("^(?<Location>\\w+-\\w+)").matcher(endpoint);
    String location = matcher.matches() ? matcher.group("Location") : "us-central1";
    EndpointName endpointName =
        EndpointName.ofProjectLocationPublisherModelName(project, location, "google", model);

    // You can use this prediction service client for multiple requests.
    try (PredictionServiceClient client = PredictionServiceClient.create(settings)) {
      PredictRequest.Builder request =
          PredictRequest.newBuilder().setEndpoint(endpointName.toString());
      if (outputDimensionality.isPresent()) {
        request.setParameters(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("outputDimensionality", valueOf(outputDimensionality.getAsInt()))
                        .build()));
      }
      for (int i = 0; i < texts.size(); i++) {
        request.addInstances(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("content", valueOf(texts.get(i)))
                        .putFields("task_type", valueOf(task))
                        .build()));
      }
      PredictResponse response = client.predict(request.build());
      List<List<Float>> floats = new ArrayList<>();
      for (Value prediction : response.getPredictionsList()) {
        Value embeddings = prediction.getStructValue().getFieldsOrThrow("embeddings");
        Value values = embeddings.getStructValue().getFieldsOrThrow("values");
        floats.add(
            values.getListValue().getValuesList().stream()
                .map(Value::getNumberValue)
                .map(Double::floatValue)
                .collect(toList()));
      }
      return floats;
    }
  }

  private static Value valueOf(String s) {
    return Value.newBuilder().setStringValue(s).build();
  }

  private static Value valueOf(int n) {
    return Value.newBuilder().setNumberValue(n).build();
  }
}

Node.js

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

async function main(
  project,
  model = 'text-embedding-005',
  texts = 'banana bread?;banana muffins?',
  task = 'QUESTION_ANSWERING',
  dimensionality = 0,
  apiEndpoint = 'us-central1-aiplatform.googleapis.com'
) {
  const aiplatform = require('@google-cloud/aiplatform');
  const {PredictionServiceClient} = aiplatform.v1;
  const {helpers} = aiplatform; // helps construct protobuf.Value objects.
  const clientOptions = {apiEndpoint: apiEndpoint};
  const location = 'us-central1';
  const endpoint = `projects/${project}/locations/${location}/publishers/google/models/${model}`;

  async function callPredict() {
    const instances = texts
      .split(';')
      .map(e => helpers.toValue({content: e, task_type: task}));
    const parameters = helpers.toValue(
      dimensionality > 0 ? {outputDimensionality: parseInt(dimensionality)} : {}
    );
    const request = {endpoint, instances, parameters};
    const client = new PredictionServiceClient(clientOptions);
    const [response] = await client.predict(request);
    const predictions = response.predictions;
    const embeddings = predictions.map(p => {
      const embeddingsProto = p.structValue.fields.embeddings;
      const valuesProto = embeddingsProto.structValue.fields.values;
      return valuesProto.listValue.values.map(v => v.numberValue);
    });
    console.log('Got embeddings: \n' + JSON.stringify(embeddings));
  }

  callPredict();
}

サポートされているテキスト言語

すべてのテキスト エンベディング モデルは英語テキストをサポートし、同テキストで評価されています。textembedding-gecko-multilingual@001 モデルと text-multilingual-embedding-002 モデルは、さらに次の言語をサポートし、それらの言語で評価されています。

  • 評価対象の言語: Arabic (ar)Bengali (bn)English (en)Spanish (es)German (de)Persian (fa)Finnish (fi)French (fr)Hindi (hi)Indonesian (id)Japanese (ja)Korean (ko)Russian (ru)Swahili (sw)Telugu (te)Thai (th)Yoruba (yo)Chinese (zh)
  • 対応している言語: AfrikaansAlbanianAmharicArabicArmenianAzerbaijaniBasqueBelarusiasnBengaliBulgarianBurmeseCatalanCebuanoChichewaChineseCorsicanCzechDanishDutchEnglishEsperantoEstonianFilipinoFinnishFrenchGalicianGeorgianGermanGreekGujaratiHaitian CreoleHausaHawaiianHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapaneseJavaneseKannadaKazakhKhmerKoreanKurdishKyrgyzLaoLatinLatvianLithuanianLuxembourgishMacedonianMalagasyMalayMalayalamMalteseMaoriMarathiMongolianNepaliNorwegianPashtoPersianPolishPortuguesePunjabiRomanianRussianSamoanScottish GaelicSerbianShonaSindhiSinhalaSlovakSlovenianSomaliSothoSpanishSundaneseSwahiliSwedishTajikTamilTeluguThaiTurkishUkrainianUrduUzbekVietnameseWelshWest FrisianXhosaYiddishYorubaZulu

モデル バージョン

モデルの安定版を使用する場合は、モデルのバージョン番号を指定します(例: text-embedding-004)。バージョン番号のないモデル(textembedding-gecko など)を指定することはおすすめしません。これは、別のモデルへのレガシー ポインタにすぎず、安定していないためです。安定版は、後続の安定版のリリース日から 6 か月間利用できます。

次の表に、利用可能なモデルの安定版を示します。

モデル名 リリース日 廃止日
text-embedding-005 2024 年 11 月 18 日 未定。
text-embedding-004 2024 年 5 月 14 日 2025 年 11 月 18 日
text-multilingual-embedding-002 2024 年 5 月 14 日 未定。
textembedding-gecko@003 2023 年 12 月 12 日 2025 年 5 月 14 日
textembedding-gecko-multilingual@001 2023 年 11 月 2 日 2025 年 5 月 14 日
textembedding-gecko@002
(リグレッションが発生していますが、引き続きサポートされます)
2023 年 11 月 2 日 2025 年 4 月 9 日
textembedding-gecko@001
(リグレッションが発生していますが、引き続きサポートされます)
2023 年 6 月 7 日 2025 年 4 月 9 日
multimodalembedding@001 2024 年 2 月 12 日 未定。

詳細については、モデルのバージョンとライフサイクルをご覧ください。

次のステップ

詳細なドキュメントについては、以下をご覧ください。