Gemini용 Vertex AI API를 사용하면 Gemini 모델로 애플리케이션을 만들 수 있습니다. 이를 사용하여 요청을 만든 후 사용 사례에 맞는 애플리케이션을 만드는 데 도움이 되는 응답을 수신합니다. 다음 주제에는 Gemini 모델의 몇 가지 사용 사례 예시가 포함되어 있습니다.
Google Cloud 계정을 만들어 시작하기
Gemini용 Vertex AI Model API를 사용하려면 Google Cloud 계정을 만듭니다.
계정을 만든 후 이 문서를 사용하여 Gemini 모델 요청 본문 ,모델 매개변수, 응답 본문, 몇 가지 샘플 요청, 응답을 검토합니다.
준비가 되면 Gemini용 Vertex AI API 빠른 시작을 참조하여 프로그래밍 언어 SDK 또는 REST API를 사용하여 Vertex AI Gemini API에 요청을 전송하는 방법을 알아보세요.
HTTP 요청 보내기
다음 탭에서는 각 Gemini 모델로 HTTP 요청을 보내는 방법을 보여줍니다.
Gemini 1.5 Pro
POST https://{REGION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{REGION}/publishers/google/models/gemini-1.5-pro:streamGenerateContent
Gemini 1.0 Pro
POST https://{REGION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{REGION}/publishers/google/models/gemini-1.0-pro:streamGenerateContent
Gemini 1.0 Pro Vision
POST https://{REGION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{REGION}/publishers/google/models/gemini-1.0-pro-vision:streamGenerateContent
모델에 스트림 요청을 보내려면 streamGenerateContent
메서드에서 자세한 내용을 참조하세요.
모델에 비 스트리밍 요청을 보내려면 대신 generateContent
메서드를 사용합니다.
지원되는 리전 목록은 사용 가능한 위치를 참조하세요.
모델 버전
자동 업데이트 버전을 사용하려면 후행 버전 번호 없이 모델 이름을 지정합니다(예: gemini-1.0-pro-001
대신 gemini-1.0-pro
).
자세한 내용은 Gemini 모델 버전 및 수명 주기를 참조하세요.
요청 본문
요청 본문에는 다음과 같은 구조의 데이터가 포함됩니다.
{ "contents": [ { "role": string, "parts": [ { // Union field data can be only one of the following: "text": string, "inlineData": { "mimeType": string, "data": string }, "fileData": { "mimeType": string, "fileUri": string }, // End of list of possible types for union field data. "videoMetadata": { "startOffset": { "seconds": integer, "nanos": integer }, "endOffset": { "seconds": integer, "nanos": integer } } } ] } ], "systemInstruction": { "role": string, "parts": [ { "text": string } ] }, "tools": [ { "functionDeclarations": [ { "name": string, "description": string, "parameters": { object (OpenAPI Object Schema) } } ] } ], "safetySettings": [ { "category": enum (HarmCategory), "threshold": enum (HarmBlockThreshold) } ], "generationConfig": { "temperature": number, "topP": number, "topK": number, "candidateCount": integer, "maxOutputTokens": integer, "stopSequences": [ string ], "responseMimeType": string } }
Gemini 모델 매개변수
요청 본문에서 다음과 같은 매개변수를 사용할 수 있습니다.
매개변수 | 설명 |
---|---|
role |
콘텐츠와 연결된 대화의 역할입니다. 싱글턴 사용 사례에서도 역할을 지정해야 합니다.
허용되는 값은 다음과 같습니다.
|
parts |
순서대로 입력을 구성하는 부분입니다. 부분마다 MIME 유형이 다를 수 있습니다.
gemini-1.0-pro 의 경우 text 필드만 유효합니다.
토큰 한도는 32,760입니다.
gemini-1.0-pro-vision 의 경우 텍스트만, 텍스트와 이미지 최대 16개 또는 텍스트와 동영상 클립 1개를 지정할 수 있습니다. 토큰 한도는 16,384입니다.
gemini-1.5-pro 의 경우 텍스트, 이미지, 동영상, 오디오 파일의 조합과 수를 지정할 수 있습니다. 토큰 한도는 1,000,000입니다.
요청에 포함된 토큰 수를 계산하려면 토큰 수 가져오기를 참조하세요. |
text |
프롬프트에 포함할 텍스트 안내 또는 채팅 대화상자입니다. |
inlineData |
이미지, 오디오 클립 또는 동영상 클립의 직렬화된 바이트 데이터입니다.
gemini-1.0-pro-vision 의 경우 inlineData 를 사용하여 이미지를 최대 1개 지정할 수 있습니다. 이미지를 최대 16개까지 지정하려면 fileData 를 사용합니다.
|
mimeType |
data 또는 fileUri 필드에 지정된 이미지, PDF, 또는 동영상의 미디어 유형입니다. 허용되는 값은 다음과 같습니다.클릭하여 MIME 유형 펼치기
gemini-1.0-pro-vision 의 경우 최대 동영상 길이는 2분입니다.
Gemini 1.5 Pro 의 경우 오디오 파일의 최대 길이는 8.4시간이고 동영상 파일의 최대 길이(오디오 제외)는 1시간입니다. 자세한 내용은 Gemini 1.5 Pro 미디어 요구사항을 참조하세요.
텍스트 파일은 UTF-8로 인코딩되어야 합니다. 텍스트 파일 콘텐츠는 토큰 제한에 반영됩니다. 이미지 해상도에는 제한이 없습니다. |
data |
프롬프트에서 인라인을 포함할 이미지, PDF, 또는 동영상의 base64 인코딩입니다. 미디어를 인라인으로 포함할 경우 MIMETYPE도 지정해야 합니다.
크기 제한: 20MB |
fileUri |
프롬프트에 포함할 이미지 또는 동영상의 Cloud Storage URI입니다. 파일을 저장하는 버킷은 요청을 전송하는 Google Cloud 프로젝트와 동일한 프로젝트에 있어야 합니다. MIMETYPE도 지정해야 합니다.
gemini-1.5-pro 의 경우 크기 제한은 2GB입니다.
gemini-1.0-pro-vision 의 경우 크기 제한은 20MB입니다.
|
videoMetadata |
선택사항입니다. 동영상 입력의 경우 기간 형식의 동영상 시작 및 끝 오프셋입니다. 예를 들어 1:00부터 시작하는 10초 클립을 지정하려면 "start_offset": { "seconds": 60 } 및 "end_offset": { "seconds": 70 } 을 설정합니다.
|
systemInstruction (미리보기)
|
선택사항입니다. gemini-1.5-pro 및 gemini-1.0-pro-002 에 사용할 수 있습니다.
성능 향상을 위해 모델을 조정하는 안내입니다. 예를 들면 '가능한 한 간결하게 답변하세요' 또는 '응답에 기술 용어를 사용하지 마세요' 등이 있습니다. text 문자열은 토큰 제한에 포함됩니다.
systemInstruction 의 role 필드는 무시되며 모델 성능에 영향을 미치지 않습니다.
|
tools |
시스템이 모델의 지식과 범위를 벗어나 외부 시스템과 상호작용하여 작업 또는 작업 집합을 수행할 수 있도록 하는 코드 조각입니다. |
functionDeclarations |
하나 이상의 함수 선언. 각 함수 선언에는 다음을 포함하는 하나의 함수에 대한 정보가 포함됩니다.
자세한 내용은 함수 호출을 참조하세요. |
category |
기준점을 구성할 안전 카테고리입니다. 허용되는 값은 다음과 같습니다. 클릭하여 안전 카테고리 펼치기
|
threshold |
가능성에 따라 지정된 안전 카테고리에 속할 수 있는 응답 차단의 기준점입니다.
|
temperature |
온도(temperature)는 응답 생성 중 샘플링에 사용되며 topP 및 topK 가 적용될 때 발생합니다. 온도(temperature)는 토큰 선택의 무작위성 수준을 제어합니다.
온도(temperature)가 낮을수록 자유롭거나 창의적인 답변과 거리가 먼 응답이 필요한 프롬프트에 적합하고, 온도(temperature)가 높을수록 보다 다양하거나 창의적인 결과로 이어질 수 있습니다. 온도(temperature)가 0 이면 확률이 가장 높은 토큰이 항상 선택됩니다. 이 경우 특정 프롬프트에 대한 응답은 대부분 확정적이지만 여전히 약간의 변형이 가능합니다.
모델이 너무 일반적이거나, 너무 짧은 응답을 반환하거나 모델이 대체 응답을 제공할 경우에는 온도(temperature)를 높여보세요.
|
maxOutputTokens |
응답에서 생성될 수 있는 토큰의 최대 개수입니다. 토큰은 약 4자(영문 기준)입니다. 토큰 100개는 단어 약 60~80개에 해당합니다.
응답이 짧을수록 낮은 값을 지정하고 잠재적으로 응답이 길면 높은 값을 지정합니다. gemini-1.5-pro 범위: 1-8192 (기본값: 8192 )
gemini-1.0-pro 범위: 1-8192 (기본값: 8192 )
gemini-1.0-pro-vision 범위: 1-2048 (기본값: 2048 )
|
topK |
Top-K는 모델이 출력용 토큰을 선택하는 방식을 변경합니다. Top-K가 1 이면 다음으로 선택된 토큰이 모델의 어휘에 포함된 모든 토큰 중에서 가장 확률이 높다는 의미입니다(그리디 디코딩이라고도 함). 반면에 Top-K가 3 이면 강도를 사용하여 가장 확률이 높은 토큰 3개 중에서 다음 토큰이 선택된다는 의미입니다.
각 토큰 선택 단계에서 확률이 가장 높은 Top-K 토큰이 샘플링됩니다. 그런 다음 Top-P를 기준으로 토큰을 추가로 필터링하고 강도 샘플링을 사용하여 최종 토큰을 선택합니다. 임의성이 낮은 응답을 위해서는 낮은 값을 지정하고 임의성이 높은 응답을 위해서는 높은 값을 지정합니다. 범위: 1-40
gemini-1.0-pro 및 gemini-1.5-pro는 topK 를 지원하지 않음
gemini-1.0-pro-vision 기본값: 32
|
topP |
Top-P는 모델이 출력용 토큰을 선택하는 방식을 변경합니다. 토큰은 확률의 합이 Top-P 값과 같아질 때까지 확률이 가장 높은 것부터(Top-K 참조) 가장 낮은 것까지 선택됩니다. 예를 들어 토큰 A, B, C의 확률이 0.3, 0.2, 0.1이고 Top-P 값이 0.5 이면 모델이 강도를 사용해서 다음 토큰으로 A 또는 B를 선택하고 C는 후보에서 제외합니다.
임의성이 낮은 응답을 위해서는 낮은 값을 지정하고 임의성이 높은 응답을 위해서는 높은 값을 지정합니다. 범위: 0.0 - 1.0
gemini-1.5-pro: 0.94
gemini-1.0-pro 기본값: 1
gemini-1.0-pro-vision 기본값: 1
|
candidateCount |
반환할 응답 변형의 개수입니다.
값은 1이어야 합니다. |
stopSequences |
문자열 중 하나가 응답에서 발견되면 모델에 텍스트 생성을 중지하도록 지시하는 문자열 목록을 지정합니다. 문자열이 응답에 여러 번 표시되면 처음 발견된 위치에서 응답이 잘립니다.
문자열은 대소문자를 구분합니다.
예를 들어 stopSequences 을(를) 지정하지 않았을 때 다음 응답이 반환됩니다.
public
static string reverse(string myString)
그런 다음 stopSequences 을(를) ["Str",
"reverse"] (으)로 설정하면 다음 응답이 반환됩니다.
public static string
목록에 최대 5개 항목이 있습니다. |
responseMimeType (미리보기)
|
선택사항입니다. gemini-1.5-pro 에 사용할 수 있습니다.
생성된 후보 텍스트의 출력 형식입니다. 지원되는 MIME 유형:
|
응답 본문
{ "candidates": [ { "content": { "parts": [ { "text": string } ] }, "finishReason": enum (FinishReason), "safetyRatings": [ { "category": enum (HarmCategory), "probability": enum (HarmProbability), "blocked": boolean } ], "citationMetadata": { "citations": [ { "startIndex": integer, "endIndex": integer, "uri": string, "title": string, "license": string, "publicationDate": { "year": integer, "month": integer, "day": integer } } ] } } ], "usageMetadata": { "promptTokenCount": integer, "candidatesTokenCount": integer, "totalTokenCount": integer } }
응답 요소 | 설명 |
---|---|
text |
생성된 텍스트입니다. |
finishReason |
모델 토큰 생성이 중지된 이유입니다. 비어 있으면 모델이 토큰 생성을 중단하지 않은 것입니다. 응답은 컨텍스트를 위해 프롬프트를 사용하기 때문에 모델의 토큰 생성 중지 동작을 변경할 수 없습니다.
|
category |
기준점을 구성할 안전 카테고리입니다. 허용되는 값은 다음과 같습니다. 클릭하여 안전 카테고리 펼치기
|
probability |
유해 콘텐츠일 확률 수준입니다.
|
blocked |
모델의 입력이나 출력이 차단되었는지 여부를 나타내는 안전 속성과 연결된 불리언 플래그입니다. |
startIndex |
콘텐츠에서 인용이 시작되는 위치를 지정하는 정수입니다. |
endIndex |
content 에서 인용이 끝나는 위치를 지정하는 정수입니다.
|
url |
인용 출처의 URL입니다. URL 소스의 예시에는 뉴스 웹사이트 또는 GitHub 저장소가 있습니다. |
title |
인용 출처의 제목입니다. 소스 제목의 예시에는 뉴스 기사 또는 도서가 있습니다. |
license |
인용과 연결된 라이선스입니다. |
publicationDate |
인용이 게시된 날짜입니다. 유효한 형식은 YYYY , YYYY-MM , YYYY-MM-DD 입니다.
|
promptTokenCount |
요청의 토큰 수입니다. |
candidatesTokenCount |
응답의 토큰 수입니다. |
totalTokenCount |
요청과 응답의 토큰 수입니다. |
샘플 요청
텍스트
REST
서버 전송 이벤트(SSE)가 사용 설정된 Vertex AI API를 사용하여 텍스트 프롬프트를 테스트하려면 URL 끝에 ?alt=sse
가 있는 POST 요청을 게시자 모델 엔드포인트로 보냅니다.
요청 데이터를 사용하기 전에 다음을 바꿉니다.
- PROJECT_ID: 프로젝트 ID
HTTP 메서드 및 URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro:streamGenerateContent?alt=sse
JSON 요청 본문:
{ "contents": { "role": "user", "parts": { "text": "Give me a recipe for banana bread." } }, "safety_settings": { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_LOW_AND_ABOVE" }, "generation_config": { "temperature": 0.2, "topP": 0.8, "topK": 40 } }
요청을 보내려면 다음 옵션 중 하나를 선택합니다.
curl
요청 본문을 request.json
파일에 저장하고 다음 명령어를 실행합니다.
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro:streamGenerateContent?alt=sse"
PowerShell
요청 본문을 request.json
파일에 저장하고 다음 명령어를 실행합니다.
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro:streamGenerateContent?alt=sse" | Select-Object -Expand Content
샘플 응답과 비슷한 JSON 응답이 표시됩니다.
채팅
채팅 프롬프트 요청 보내기(Gemini)도 참조하세요.
REST
서버 전송 이벤트(SSE)가 사용 설정된 Vertex AI API를 사용하여 채팅 프롬프트를 테스트하려면 URL 끝에 ?alt=sse
가 있는 POST 요청을 게시자 모델 엔드포인트로 보냅니다.
요청 데이터를 사용하기 전에 다음을 바꿉니다.
- PROJECT_ID: 프로젝트 ID
HTTP 메서드 및 URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro:streamGenerateContent?alt=sse
JSON 요청 본문:
{ "contents": [ { "role": "USER", "parts": { "text": "Hello!" } }, { "role": "MODEL", "parts": { "text": "Argh! What brings ye to my ship?" } }, { "role": "USER", "parts": { "text": "Wow! You are a real-life priate!" } } ], "safety_settings": { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_LOW_AND_ABOVE" }, "generation_config": { "temperature": 0.2, "topP": 0.8, "topK": 40, "maxOutputTokens": 200, } }
요청을 보내려면 다음 옵션 중 하나를 선택합니다.
curl
요청 본문을 request.json
파일에 저장하고 다음 명령어를 실행합니다.
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro:streamGenerateContent?alt=sse"
PowerShell
요청 본문을 request.json
파일에 저장하고 다음 명령어를 실행합니다.
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro:streamGenerateContent?alt=sse" | Select-Object -Expand Content
샘플 응답과 비슷한 JSON 응답이 표시됩니다.
Python
Python용 Vertex AI SDK를 설치하거나 업데이트하는 방법은 Python용 Vertex AI SDK 설치를 참조하세요. 자세한 내용은 Python API 참고 문서를 확인하세요.
Node.js
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
Java
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
Go
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Go 설정 안내를 따르세요. 자세한 내용은 Vertex AI Go API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
멀티모달
멀티모달 프롬프트 요청 보내기도 참조하세요.
REST
Vertex AI API를 사용하여 멀티모달 프롬프트를 테스트하려면 POST 요청을 게시자 모델 엔드포인트로 전송합니다.
요청 데이터를 사용하기 전에 다음을 바꿉니다.
- PROJECT_ID: 프로젝트 ID
HTTP 메서드 및 URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision:streamGenerateContent
JSON 요청 본문:
{ "contents": { "role": "user", "parts": [ { "fileData": { "mimeType": "image/jpeg", "fileUri": "gs://cloud-samples-data/ai-platform/flowers/daisy/10559679065_50d2b16f6d.jpg" } }, { "text": "Describe this picture." } ] }, "safety_settings": { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_LOW_AND_ABOVE" }, "generation_config": { "temperature": 0.4, "topP": 1.0, "topK": 32, "maxOutputTokens": 2048 } }
요청을 보내려면 다음 옵션 중 하나를 선택합니다.
curl
요청 본문을 request.json
파일에 저장하고 다음 명령어를 실행합니다.
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision:streamGenerateContent"
PowerShell
요청 본문을 request.json
파일에 저장하고 다음 명령어를 실행합니다.
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro-vision:streamGenerateContent" | Select-Object -Expand Content
샘플 응답과 비슷한 JSON 응답이 표시됩니다.
Python
Python용 Vertex AI SDK를 설치하거나 업데이트하는 방법은 Python용 Vertex AI SDK 설치를 참조하세요. 자세한 내용은 Python API 참고 문서를 확인하세요.
Node.js
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
Java
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
Go
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Go 설정 안내를 따르세요. 자세한 내용은 Vertex AI Go API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
C#
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 C# 설정 안내를 따르세요. 자세한 내용은 Vertex AI C# API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
함수
함수 호출도 참조하세요.
REST
Vertex AI API를 사용하여 함수 프롬프트를 테스트하려면 POST 요청을 게시자 모델 엔드포인트로 전송합니다.
요청 데이터를 사용하기 전에 다음을 바꿉니다.
- PROJECT_ID: 프로젝트 ID
HTTP 메서드 및 URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro:streamGenerateContent
JSON 요청 본문:
{ "contents": { "role": "user", "parts": { "text": "Which theaters in Mountain View show Barbie movie?" } }, "tools": [ { "function_declarations": [ { "name": "find_movies", "description": "find movie titles currently playing in theaters based on any description, genre, title words, etc.", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616" }, "description": { "type": "string", "description": "Any kind of description including category or genre, title words, attributes, etc." } }, "required": [ "description" ] } }, { "name": "find_theaters", "description": "find theaters based on location and optionally movie title which are is currently playing in theaters", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616" }, "movie": { "type": "string", "description": "Any movie title" } }, "required": [ "location" ] } }, { "name": "get_showtimes", "description": "Find the start times for movies playing in a specific theater", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616" }, "movie": { "type": "string", "description": "Any movie title" }, "theater": { "type": "string", "description": "Name of the theater" }, "date": { "type": "string", "description": "Date for requested showtime" } }, "required": [ "location", "movie", "theater", "date" ] } } ] } ] }
요청을 보내려면 다음 옵션 중 하나를 선택합니다.
curl
요청 본문을 request.json
파일에 저장하고 다음 명령어를 실행합니다.
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro:streamGenerateContent"
PowerShell
요청 본문을 request.json
파일에 저장하고 다음 명령어를 실행합니다.
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-1.0-pro:streamGenerateContent" | Select-Object -Expand Content
샘플 응답과 비슷한 JSON 응답이 표시됩니다.
Python
Python용 Vertex AI SDK를 설치하거나 업데이트하는 방법은 Python용 Vertex AI SDK 설치를 참조하세요. 자세한 내용은 Python API 참고 문서를 확인하세요.
샘플 응답
텍스트
data: {"candidates": [{"content": {"role": "model","parts": [{"text": "Ingredients:\n\n- 3 ripe bananas, mashed\n- 1 cup sugar"}]},"safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}]}]}
data: {"candidates": [{"content": {"role": "model","parts": [{"text": "\n- 1/2 cup (1 stick) unsalted butter, softened\n"}]},"safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}]}]}
data: {"candidates": [{"content": {"role": "model","parts": [{"text": "- 2 large eggs\n- 2 cups all-purpose flour\n- 1 teaspoon baking soda\n- 1/2 teaspoon salt\n- "}]},"safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}]}]}
data: {"candidates": [{"content": {"role": "model","parts": [{"text": "1/2 cup chopped walnuts (optional)\n\nInstructions:\n\n1. Preheat oven to 350 degrees F (175 degrees C). Grease"}]},"safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}]}]}
data: {"candidates": [{"content": {"role": "model","parts": [{"text": " and flour a 9x5 inch loaf pan.\n2. In a large bowl, cream together the butter and sugar until light and fluffy. Beat in the eggs one at a time, then stir in the mashed bananas.\n3"}]},"safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}],"citationMetadata": {"citations": [{"startIndex": 322,"endIndex": 451,"uri": "https://discover.texasrealfood.com/texas-home-cooking/whats-in-season-plums-exploring-health-benefits-varieties-and-recipes"}]}}]}
data: {"candidates": [{"content": {"role": "model","parts": [{"text": ". In a separate bowl, whisk together the flour, baking soda, and salt. Gradually add the dry ingredients to the wet ingredients, mixing until just combined. Fold in the walnuts, if desired.\n4. Pour the batter into the"}]},"safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}],"citationMetadata": {"citations": [{"startIndex": 472,"endIndex": 614,"uri": "https://commandame.com/urban-cookhouse-half-baked-cookie-recipe/"}]}}]}
data: {"candidates": [{"content": {"role": "model","parts": [{"text": " prepared loaf pan and bake for 50-60 minutes, or until a toothpick inserted into the center comes out clean.\n5. Let the bread cool in the pan for 10 minutes before turning it out onto a wire rack to cool completely."}]},"finishReason": "STOP","safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}],"citationMetadata": {"citations": [{"startIndex": 666,"endIndex": 796,"uri": "https://dessertdonelight.com/healthy-hawaiian-banana-bread/"},{"startIndex": 728,"endIndex": 851,"uri": "https://earlsgrocery.com/gluten-free-bread/gluten-free-yeast-free-bread-healthy-and-nutition"}]}}],"usageMetadata": {"promptTokenCount": 8,"candidatesTokenCount": 245,"totalTokenCount": 253}}
채팅
data: {"candidates": [{"content": {"role": "model","parts": [{"text": "Avast there, landlubber! Ye be mistaken. I be but a"}]},"safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "LOW"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}]}]}
data: {"candidates": [{"content": {"role": "model","parts": [{"text": " humble pirate of the seven seas, brought to life by the magic of artificial intelligence"}]},"safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}]}]}
data: {"candidates": [{"content": {"role": "model","parts": [{"text": ". I be no real-life pirate, but I be mighty good at pretendin'!"}]},"finishReason": "STOP","safetyRatings": [{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 23,"candidatesTokenCount": 50,"totalTokenCount": 73}}
멀티모달
[{
"candidates": [
{
"content": {
"role": "model",
"parts": [
{
"text": " A daisy is growing up through a pile of brown and yellow fall leaves"
}
]
},
"finishReason": "STOP",
"safetyRatings": [
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability": "NEGLIGIBLE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability": "NEGLIGIBLE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability": "NEGLIGIBLE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability": "NEGLIGIBLE"
}
]
}
],
"usageMetadata": {
"promptTokenCount": 262,
"candidatesTokenCount": 14,
"totalTokenCount": 276
}
}]
함수
[{
"candidates": [
{
"content": {
"parts": [
{
"functionCall": {
"name": "find_theaters",
"args": {
"movie": "Barbie",
"location": "Mountain View, CA"
}
}
}
]
},
"finishReason": "STOP",
"safetyRatings": [
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability": "NEGLIGIBLE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability": "NEGLIGIBLE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability": "NEGLIGIBLE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability": "NEGLIGIBLE"
}
]
}
],
"usageMetadata": {
"promptTokenCount": 9,
"totalTokenCount": 9
}
}]
다음 단계
Gemini용 Vertex AI API를 사용하는 방법을 알아봅니다.
- 채팅 프롬프트 요청 보내기 방법 알아보기
- 멀티모달 프롬프트 요청 보내기 방법 알아보기
- 함수 호출 방법 알아보기
- 토큰 수를 가져오는 방법 알아보기
- 안전 속성 구성 방법 알아보기