Text embeddings

Embeddings for Text (textembedding-gecko) is the name for the model that supports text embeddings. Text embeddings are a NLP technique that converts textual data into numerical vectors that can be processed by machine learning algorithms, especially large models. These vector representations are designed to capture the semantic meaning and context of the words they represent.

There are a few versions available for embeddings. textembedding-gecko@002 is the newest stable embedding model with enhanced AI quality, and textembedding-gecko-multilingual@001 is a model optimized for a wide range of non-English languages.

To explore this model in the console, see the Embeddings for Text model card in the Model Garden.
Go to the Model Garden

Use cases

Semantic Search: Text embeddings can be used to represent both the user's query and the universe of documents in a high-dimensional vector space. Documents that are more semantically similar to the user's query will have a shorter distance in the vector space, and can be ranked higher in the search results.

Text Classification: Training a model that maps the text embeddings to the correct category labels (e.g., cat vs. dog, spam vs. not spam). Once the model is trained, it can be used to classify new text inputs into one or more categories based on their embeddings.

HTTP request

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/textembedding-gecko:predict

Model versions

To use the latest model version, specify with the @latest suffix, for example textembedding-gecko@latest.

To use a stable model version, specify the model version number, for example textembedding-gecko@002. Each stable version is available for six months after the release date of the subsequent stable version.

The following table contains the available stable model versions:

textembedding-gecko model Release date Deprecation date
textembedding-gecko@002 November 2, 2023 Not applicable
textembedding-gecko-multilingual@001 November 2, 2023 Not applicable
textembedding-gecko@001 June 7, 2023 Not applicable

For more information, see Model versions and lifecycle.

Request body

  "instances": [
      "task_type": "RETRIEVAL_DOCUMENT",
      "title": "document title",
      "content": "I would like embeddings for this text!"

The Vertex AI PaLM Embedding API performs online (real-time) predictions to get embeddings from input text.

The API accepts a maximum of 3,072 input tokens and outputs 768-dimensional vector embeddings. Use the following parameters for the text embeddings model textembedding-gecko. For more information, see Text embeddings overview.

Parameter Description Acceptable values


The text that you want to generate embeddings for. Text


The `task_type` parameter is defined as the intended downstream application to help the model produce better quality embeddings. It is a string that can take on one of the following values. `RETRIEVAL_QUERY`, `RETRIEVAL_DOCUMENT`,`SEMANTIC_SIMILARITY`, `CLASSIFICATION` `CLUSTERING`.


The title for the embedding. Text

Sample request


To test a text prompt by using the Vertex AI API, send a POST request to the publisher model endpoint.

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • TEXT: The text that you want to generate embeddings for.

HTTP method and URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/textembedding-gecko:predict

Request JSON body:

  "instances": [
    { "content": "TEXT"}

To send your request, choose one of these options:


Save the request body in a file named request.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \


Save the request body in a file named request.json, and execute the following command:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/textembedding-gecko:predict" | Select-Object -Expand Content

You should receive a JSON response similar to the sample response.

Vertex AI SDK for Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Vertex AI SDK for Python API reference documentation.

from vertexai.language_models import TextEmbeddingModel

def text_embedding() -> list:
    """Text embedding with a Large Language Model."""
    model = TextEmbeddingModel.from_pretrained("textembedding-gecko@001")
    embeddings = model.get_embeddings(["What is life?"])
    for embedding in embeddings:
        vector = embedding.values
        print(f"Length of Embedding Vector: {len(vector)}")
    return vector

if __name__ == "__main__":


Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',

const publisher = 'google';
const model = 'textembedding-gecko@001';

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function callPredict() {
  // Configure the parent resource
  const endpoint = `projects/${project}/locations/${location}/publishers/${publisher}/models/${model}`;

  const instance = {
    content: 'What is life?',
  const instanceValue = helpers.toValue(instance);
  const instances = [instanceValue];

  const parameter = {
    temperature: 0,
    maxOutputTokens: 256,
    topP: 0,
    topK: 1,
  const parameters = helpers.toValue(parameter);

  const request = {

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  console.log('Get text embeddings response');
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const prediction of predictions) {
    console.log(`\t\tPrediction : ${JSON.stringify(prediction)}`);



Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1beta1.EndpointName;
import com.google.cloud.aiplatform.v1beta1.PredictResponse;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictTextEmbeddingsSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // Details about text embedding request structure and supported models are available in:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    String instance = "{ \"content\": \"What is life?\"}";
    String project = "YOUR_PROJECT_ID";
    String location = "us-central1";
    String publisher = "google";
    String model = "textembedding-gecko@001";

    predictTextEmbeddings(instance, project, location, publisher, model);

  // Get text embeddings from a supported embedding model
  public static void predictTextEmbeddings(
      String instance, String project, String location, String publisher, String model)
      throws IOException {
    String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      // Use Value.Builder to convert instance to a dynamically typed value that can be
      // processed by the service.
      Value.Builder instanceValue = Value.newBuilder();
      JsonFormat.parser().merge(instance, instanceValue);
      List<Value> instances = new ArrayList<>();

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, ValueConverter.EMPTY_VALUE);
      System.out.println("Predict Response");
      for (Value prediction : predictResponse.getPredictionsList()) {
        System.out.format("\tPrediction: %s\n", prediction);

Response body

  "predictions": [
      "embeddings": {
        "statistics": {
          "truncated": boolean,
          "token_count": integer
        "values": [ number ]
Response element Description
embeddings The result generated from input text.
statistics The statistics computed from the input text.
truncated Indicates if the input text was longer than max allowed tokens and truncated.
tokenCount Number of tokens of the input text.
values The values field contains the embedding vectors corresponding to the words in the input text.

Sample response

  "predictions": [
      "embeddings": {
        "values": [
        "statistics": {
          "token_count": 4,
          "truncated": false