Erkennungssysteme

Speech-to-Text V2 unterstützt eine Google Cloud -Ressource namens Erkennungssystem. Erkennungssysteme stellen eine gespeicherte und wiederverwendbare Erkennungskonfiguration dar. Sie können sie verwenden, um Transkriptionen oder Traffic für Ihre Anwendung logisch zu gruppieren.

Hinweise

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Speech-to-Text APIs.

    Enable the APIs

  5. Make sure that you have the following role or roles on the project: Cloud Speech Administrator

    Check for the roles

    1. In the Google Cloud console, go to the IAM page.

      Go to IAM
    2. Select the project.
    3. In the Principal column, find all rows that identify you or a group that you're included in. To learn which groups you're included in, contact your administrator.

    4. For all rows that specify or include you, check the Role colunn to see whether the list of roles includes the required roles.

    Grant the roles

    1. In the Google Cloud console, go to the IAM page.

      IAM aufrufen
    2. Wählen Sie das Projekt aus.
    3. Klicken Sie auf Zugriff erlauben.
    4. Geben Sie im Feld Neue Hauptkonten Ihre Nutzer-ID ein. Dies ist in der Regel die E-Mail-Adresse eines Google-Kontos.

    5. Wählen Sie in der Liste Rolle auswählen eine Rolle aus.
    6. Wenn Sie weitere Rollen hinzufügen möchten, klicken Sie auf Weitere Rolle hinzufügen und fügen Sie weitere Rollen hinzu.
    7. Klicken Sie auf Speichern.
    8. Install the Google Cloud CLI.
    9. To initialize the gcloud CLI, run the following command:

      gcloud init
    10. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

      Go to project selector

    11. Make sure that billing is enabled for your Google Cloud project.

    12. Enable the Speech-to-Text APIs.

      Enable the APIs

    13. Make sure that you have the following role or roles on the project: Cloud Speech Administrator

      Check for the roles

      1. In the Google Cloud console, go to the IAM page.

        Go to IAM
      2. Select the project.
      3. In the Principal column, find all rows that identify you or a group that you're included in. To learn which groups you're included in, contact your administrator.

      4. For all rows that specify or include you, check the Role colunn to see whether the list of roles includes the required roles.

      Grant the roles

      1. In the Google Cloud console, go to the IAM page.

        IAM aufrufen
      2. Wählen Sie das Projekt aus.
      3. Klicken Sie auf Zugriff erlauben.
      4. Geben Sie im Feld Neue Hauptkonten Ihre Nutzer-ID ein. Dies ist in der Regel die E-Mail-Adresse eines Google-Kontos.

      5. Wählen Sie in der Liste Rolle auswählen eine Rolle aus.
      6. Wenn Sie weitere Rollen hinzufügen möchten, klicken Sie auf Weitere Rolle hinzufügen und fügen Sie weitere Rollen hinzu.
      7. Klicken Sie auf Speichern.
      8. Install the Google Cloud CLI.
      9. To initialize the gcloud CLI, run the following command:

        gcloud init
      10. Clientbibliotheken können Standardanmeldedaten für Anwendungen verwenden, um sich einfach bei Google APIs zu authentifizieren und Anfragen an diese APIs zu senden. Mit den Standardanmeldedaten für Anwendungen können Sie Ihre Anwendung lokal testen und bereitstellen, ohne den zugrunde liegenden Code zu ändern. Weitere Informationen finden Sie unter Für die Verwendung von Clientbibliotheken authentifizieren.

      11. If you're using a local shell, then create local authentication credentials for your user account:

        gcloud auth application-default login

        You don't need to do this if you're using Cloud Shell.

      Prüfen Sie außerdem, ob Sie die Clientbibliothek installiert haben.

      Erkennungssysteme

      Erkennungssysteme sind konfigurierbare, wiederverwendbare Erkennungskonfigurationen. Das Erstellen von Erkennungssystemen mit häufig verwendeten Erkennungskonfigurationen vereinfacht Erkennungsanfragen und reduziert ihre Größe.

      Das Kernelement eines Erkennungssystems ist seine Standardkonfiguration. Dies ist die Konfiguration für jede Erkennungsanfrage, die von diesem Erkennungssystem ausgeführt wird. Sie können diese Standardeinstellung pro Anfrage überschreiben. Behalten Sie die Standardkonfiguration für Features bei, die Sie für Anfragen für ein bestimmtes Erkennungssystem benötigen, und überschreiben Sie bestimmte Features für bestimmte Anfragen.

      Wiederverwenden Sie Erkennungssysteme so oft wie möglich. Durch das Erstellen eines Erkennungssystems für jede Anfrage wird die Latenz Ihrer Anwendung drastisch erhöht und Ihre Ressourcenkontingente werden verbraucht. Erstellen Sie sie nur selten während der Integration und Einrichtung und wiederverwenden Sie sie dann für Erkennungsanfragen.

      Erkennungssysteme erstellen

      Hier ist ein Beispiel für das Erstellen eines Erkennungssystems, mit dem Erkennungsanfragen gesendet werden können:

      Python

      import os
      
      from google.cloud.speech_v2 import SpeechClient
      from google.cloud.speech_v2.types import cloud_speech
      
      PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
      
      
      def create_recognizer(recognizer_id: str) -> cloud_speech.Recognizer:
          """Сreates a recognizer with an unique ID and default recognition configuration.
          Args:
              recognizer_id (str): The unique identifier for the recognizer to be created.
          Returns:
              cloud_speech.Recognizer: The created recognizer object with configuration.
          """
          # Instantiates a client
          client = SpeechClient()
      
          request = cloud_speech.CreateRecognizerRequest(
              parent=f"projects/{PROJECT_ID}/locations/global",
              recognizer_id=recognizer_id,
              recognizer=cloud_speech.Recognizer(
                  default_recognition_config=cloud_speech.RecognitionConfig(
                      language_codes=["en-US"], model="long"
                  ),
              ),
          )
          # Sends the request to create a recognizer and waits for the operation to complete
          operation = client.create_recognizer(request=request)
          recognizer = operation.result()
      
          print("Created Recognizer:", recognizer.name)
          return recognizer
      
      

      Vorhandenes Erkennungssystem zum Senden von Anfragen verwenden

      Hier ist ein Beispiel für das Senden mehrerer Erkennungsanfragen mit demselben Erkennungssystem:

      Python

      import os
      
      from google.cloud.speech_v2 import SpeechClient
      from google.cloud.speech_v2.types import cloud_speech
      
      PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
      
      
      def transcribe_reuse_recognizer(
          audio_file: str,
          recognizer_id: str,
      ) -> cloud_speech.RecognizeResponse:
          """Transcribe an audio file using an existing recognizer.
          Args:
              audio_file (str): Path to the local audio file to be transcribed.
                  Example: "resources/audio.wav"
              recognizer_id (str): The ID of the existing recognizer to be used for transcription.
          Returns:
              cloud_speech.RecognizeResponse: The response containing the transcription results.
          """
          # Instantiates a client
          client = SpeechClient()
      
          # Reads a file as bytes
          with open(audio_file, "rb") as f:
              audio_content = f.read()
      
          request = cloud_speech.RecognizeRequest(
              recognizer=f"projects/{PROJECT_ID}/locations/global/recognizers/{recognizer_id}",
              content=audio_content,
          )
      
          # Transcribes the audio into text
          response = client.recognize(request=request)
      
          for result in response.results:
              print(f"Transcript: {result.alternatives[0].transcript}")
      
          return response
      
      

      Features in einem Erkennungssystem aktivieren

      Erkennungssysteme können für verschiedene Features bei der Erkennung genutzt werden, z. B. automatische Zeichensetzung oder Filterung von vulgärer Sprache.

      Im Folgenden finden Sie ein Beispiel für die Aktivierung der automatischen Zeichensetzung in einem Erkennungssystem, wodurch die automatische Zeichensetzung in der Erkennungsanfrage mit diesem Erkennungsmodul aktiviert wird:

      Python

      
      from google.cloud.speech_v2 import SpeechClient
      from google.cloud.speech_v2.types import cloud_speech
      
      from google.api_core.exceptions import NotFound
      
      # Instantiates a client
      client = SpeechClient()
      
      # TODO(developer): Update and un-comment below line
      # PROJECT_ID = "your-project-id"
      # recognizer_id = "id-recognizer"
      recognizer_name = (
          f"projects/{PROJECT_ID}/locations/global/recognizers/{recognizer_id}"
      )
      try:
          # Use an existing recognizer
          recognizer = client.get_recognizer(name=recognizer_name)
          print("Using existing Recognizer:", recognizer.name)
      except NotFound:
          # Create a new recognizer
          request = cloud_speech.CreateRecognizerRequest(
              parent=f"projects/{PROJECT_ID}/locations/global",
              recognizer_id=recognizer_id,
              recognizer=cloud_speech.Recognizer(
                  default_recognition_config=cloud_speech.RecognitionConfig(
                      auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
                      language_codes=["en-US"],
                      model="latest_long",
                      features=cloud_speech.RecognitionFeatures(
                          enable_automatic_punctuation=True,
                      ),
                  ),
              ),
          )
          operation = client.create_recognizer(request=request)
          recognizer = operation.result()
          print("Created Recognizer:", recognizer.name)
      
      # Reads a file as bytes
      with open(audio_file, "rb") as f:
          audio_content = f.read()
      
      request = cloud_speech.RecognizeRequest(
          recognizer=f"projects/{PROJECT_ID}/locations/global/recognizers/{recognizer_id}",
          content=audio_content,
      )
      
      # Transcribes the audio into text
      response = client.recognize(request=request)
      
      for result in response.results:
          print(f"Transcript: {result.alternatives[0].transcript}")
      

      Erkennungssystem-Features in Erkennungsanfragen überschreiben

      Hier ist ein Beispiel für das Aktivieren mehrerer Features in einem Erkennungssystem, wobei jedoch die automatische Zeichensetzung für diese Erkennungsanfrage deaktiviert wird:

      Python

      import os
      
      from google.cloud.speech_v2 import SpeechClient
      from google.cloud.speech_v2.types import cloud_speech
      from google.protobuf.field_mask_pb2 import FieldMask
      
      PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
      
      
      def transcribe_override_recognizer(
          audio_file: str,
          recognizer_id: str,
      ) -> cloud_speech.RecognizeResponse:
          """Transcribe an audio file using an existing recognizer with overridden settings for the recognition request.
          Args:
              audio_file (str): Path to the local audio file to be transcribed.
                  Example: "resources/audio.wav"
              recognizer_id (str): The unique ID of the recognizer to be used for transcription.
          Returns:
              cloud_speech.RecognizeResponse: The response containing the transcription results.
          """
          # Instantiates a client
          client = SpeechClient()
      
          request = cloud_speech.CreateRecognizerRequest(
              parent=f"projects/{PROJECT_ID}/locations/global",
              recognizer_id=recognizer_id,
              recognizer=cloud_speech.Recognizer(
                  default_recognition_config=cloud_speech.RecognitionConfig(
                      auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
                      language_codes=["en-US"],
                      model="latest_long",
                      features=cloud_speech.RecognitionFeatures(
                          enable_automatic_punctuation=True,
                          enable_word_time_offsets=True,
                      ),
                  ),
              ),
          )
      
          operation = client.create_recognizer(request=request)
          recognizer = operation.result()
      
          print("Created Recognizer:", recognizer.name)
      
          # Reads a file as bytes
          with open(audio_file, "rb") as f:
              audio_content = f.read()
      
          request = cloud_speech.RecognizeRequest(
              recognizer=f"projects/{PROJECT_ID}/locations/global/recognizers/{recognizer_id}",
              config=cloud_speech.RecognitionConfig(
                  features=cloud_speech.RecognitionFeatures(
                      enable_word_time_offsets=False,
                  ),
              ),
              config_mask=FieldMask(paths=["features.enable_word_time_offsets"]),
              content=audio_content,
          )
      
          # Transcribes the audio into text
          response = client.recognize(request=request)
      
          for result in response.results:
              print(f"Transcript: {result.alternatives[0].transcript}")
      
          return response
      
      

      Anfragen ohne Erkennung senden

      Erkennungssysteme sind bei Erkennungsanfragen optional. Wenn Sie eine Anfrage ohne Erkennung senden möchten, verwenden Sie einfach die Erkennungs-Ressourcen-ID _ an dem Standort, an dem Sie eine Anfrage stellen. Hier ein Beispiel:

      Python

      import os
      
      from google.cloud.speech_v2 import SpeechClient
      from google.cloud.speech_v2.types import cloud_speech
      
      PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
      
      
      def quickstart_v2(audio_file: str) -> cloud_speech.RecognizeResponse:
          """Transcribe an audio file.
          Args:
              audio_file (str): Path to the local audio file to be transcribed.
          Returns:
              cloud_speech.RecognizeResponse: The response from the recognize request, containing
              the transcription results
          """
          # Reads a file as bytes
          with open(audio_file, "rb") as f:
              audio_content = f.read()
      
          # Instantiates a client
          client = SpeechClient()
      
          config = cloud_speech.RecognitionConfig(
              auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
              language_codes=["en-US"],
              model="long",
          )
      
          request = cloud_speech.RecognizeRequest(
              recognizer=f"projects/{PROJECT_ID}/locations/global/recognizers/_",
              config=config,
              content=audio_content,
          )
      
          # Transcribes the audio into text
          response = client.recognize(request=request)
      
          for result in response.results:
              print(f"Transcript: {result.alternatives[0].transcript}")
      
          return response
      
      

      Bereinigen

      Mit den folgenden Schritten vermeiden Sie, dass Ihrem Google Cloud -Konto die in dieser Anleitung verwendeten Ressourcen in Rechnung gestellt werden:

      1. Optional: Revoke the authentication credentials that you created, and delete the local credential file.

        gcloud auth application-default revoke
      2. Optional: Revoke credentials from the gcloud CLI.

        gcloud auth revoke

      Console

    14. In the Google Cloud console, go to the Manage resources page.

      Go to Manage resources

    15. In the project list, select the project that you want to delete, and then click Delete.
    16. In the dialog, type the project ID, and then click Shut down to delete the project.
    17. gcloud

      Delete a Google Cloud project:

      gcloud projects delete PROJECT_ID

      Nächste Schritte