Mentranskripsi ucapan menjadi teks menggunakan library klien

Halaman ini menjelaskan cara mengirim permintaan pengenalan ucapan ke Speech-to-Text dalam bahasa pemrograman favorit Anda menggunakan Library Klien Google Cloud.

Speech-to-Text memudahkan integrasi teknologi pengenalan ucapan Google ke dalam aplikasi developer. Anda dapat mengirim data audio ke Speech-to-Text API, yang kemudian menampilkan transkripsi teks dari file audio tersebut. Untuk mengetahui informasi selengkapnya tentang layanan ini, lihat Dasar-dasar Speech-to-Text.

Sebelum memulai

Sebelum dapat mengirim permintaan ke Speech-to-Text API, Anda harus sudah menyelesaikan tindakan berikut. Lihat halaman sebelum memulai untuk mengetahui detailnya.

  • Aktifkan Speech-to-Text di project Google Cloud.
  • Pastikan penagihan diaktifkan untuk Speech-to-Text.
  • Install the Google Cloud CLI, then initialize it by running the following command:

    gcloud init
  • If you're using a local shell, then create local authentication credentials for your user account:

    gcloud auth application-default login

    You don't need to do this if you're using Cloud Shell.

  • (Opsional) Buat bucket Google Cloud Storage baru untuk menyimpan data audio Anda.

Menginstal library klien

Go

go get cloud.google.com/go/speech/apiv1

Java

If you are using Maven, add the following to your pom.xml file. For more information about BOMs, see The Google Cloud Platform Libraries BOM.

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>26.50.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-speech</artifactId>
  </dependency>
</dependencies>

If you are using Gradle, add the following to your dependencies:

implementation 'com.google.cloud:google-cloud-speech:4.48.0'

If you are using sbt, add the following to your dependencies:

libraryDependencies += "com.google.cloud" % "google-cloud-speech" % "4.48.0"

If you're using Visual Studio Code, IntelliJ, or Eclipse, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.

Node.js

Sebelum menginstal library, pastikan Anda telah menyiapkan lingkungan untuk pengembangan Node.js.

npm install --save @google-cloud/speech

Python

Sebelum menginstal library, pastikan Anda telah menyiapkan lingkungan untuk pengembangan Python.

pip install --upgrade google-cloud-speech

Membuat permintaan transkripsi audio

Kini Anda dapat menggunakan Speech-to-Text untuk mentranskripsikan file audio ke teks. Gunakan kode berikut untuk mengirim permintaan recognize ke Speech-to-Text API.

Go


// Sample speech-quickstart uses the Google Cloud Speech API to transcribe
// audio.
package main

import (
	"context"
	"fmt"
	"log"

	speech "cloud.google.com/go/speech/apiv1"
	"cloud.google.com/go/speech/apiv1/speechpb"
)

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := speech.NewClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)
	}
	defer client.Close()

	// The path to the remote audio file to transcribe.
	fileURI := "gs://cloud-samples-data/speech/brooklyn_bridge.raw"

	// Detects speech in the audio file.
	resp, err := client.Recognize(ctx, &speechpb.RecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 16000,
			LanguageCode:    "en-US",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Uri{Uri: fileURI},
		},
	})
	if err != nil {
		log.Fatalf("failed to recognize: %v", err)
	}

	// Prints the results.
	for _, result := range resp.Results {
		for _, alt := range result.Alternatives {
			fmt.Printf("\"%v\" (confidence=%3f)\n", alt.Transcript, alt.Confidence)
		}
	}
}

Java

// Imports the Google Cloud client library
import com.google.cloud.speech.v1.RecognitionAudio;
import com.google.cloud.speech.v1.RecognitionConfig;
import com.google.cloud.speech.v1.RecognitionConfig.AudioEncoding;
import com.google.cloud.speech.v1.RecognizeResponse;
import com.google.cloud.speech.v1.SpeechClient;
import com.google.cloud.speech.v1.SpeechRecognitionAlternative;
import com.google.cloud.speech.v1.SpeechRecognitionResult;
import java.util.List;

public class QuickstartSample {

  /** Demonstrates using the Speech API to transcribe an audio file. */
  public static void main(String... args) throws Exception {
    // Instantiates a client
    try (SpeechClient speechClient = SpeechClient.create()) {

      // The path to the audio file to transcribe
      String gcsUri = "gs://cloud-samples-data/speech/brooklyn_bridge.raw";

      // Builds the sync recognize request
      RecognitionConfig config =
          RecognitionConfig.newBuilder()
              .setEncoding(AudioEncoding.LINEAR16)
              .setSampleRateHertz(16000)
              .setLanguageCode("en-US")
              .build();
      RecognitionAudio audio = RecognitionAudio.newBuilder().setUri(gcsUri).build();

      // Performs speech recognition on the audio file
      RecognizeResponse response = speechClient.recognize(config, audio);
      List<SpeechRecognitionResult> results = response.getResultsList();

      for (SpeechRecognitionResult result : results) {
        // There can be several alternative transcripts for a given chunk of speech. Just use the
        // first (most likely) one here.
        SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
        System.out.printf("Transcription: %s%n", alternative.getTranscript());
      }
    }
  }
}

Node.js

Sebelum menjalankan contoh, pastikan Anda telah menyiapkan lingkungan untuk pengembangan Node.js.

// Imports the Google Cloud client library
const speech = require('@google-cloud/speech');

// Creates a client
const client = new speech.SpeechClient();

async function quickstart() {
  // The path to the remote LINEAR16 file
  const gcsUri = 'gs://cloud-samples-data/speech/brooklyn_bridge.raw';

  // The audio file's encoding, sample rate in hertz, and BCP-47 language code
  const audio = {
    uri: gcsUri,
  };
  const config = {
    encoding: 'LINEAR16',
    sampleRateHertz: 16000,
    languageCode: 'en-US',
  };
  const request = {
    audio: audio,
    config: config,
  };

  // Detects speech in the audio file
  const [response] = await client.recognize(request);
  const transcription = response.results
    .map(result => result.alternatives[0].transcript)
    .join('\n');
  console.log(`Transcription: ${transcription}`);
}
quickstart();

Python

Sebelum menjalankan contoh, pastikan Anda telah menyiapkan lingkungan untuk pengembangan Python.


# Imports the Google Cloud client library


from google.cloud import speech



def run_quickstart() -> speech.RecognizeResponse:
    # Instantiates a client
    client = speech.SpeechClient()

    # The name of the audio file to transcribe
    gcs_uri = "gs://cloud-samples-data/speech/brooklyn_bridge.raw"

    audio = speech.RecognitionAudio(uri=gcs_uri)

    config = speech.RecognitionConfig(
        encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code="en-US",
    )

    # Detects speech in the audio file
    response = client.recognize(config=config, audio=audio)

    for result in response.results:
        print(f"Transcript: {result.alternatives[0].transcript}")

Selamat! Anda telah mengirimkan permintaan pertama ke Speech-to-Text.

Jika Anda menerima error atau respons kosong dari Speech-to-Text, lihat langkah-langkah pemecahan masalah dan mitigasi error.

Pembersihan

Agar akun Google Cloud Anda tidak dikenakan biaya untuk resource yang digunakan pada halaman ini, ikuti langkah-langkah berikut.

Langkah berikutnya