Inspecter le stockage et les bases de données Google Cloud pour identifier les données sensibles

Une gestion appropriée des données sensibles contenues dans un dépôt de stockage commence par la classification du stockage. Cela consiste à identifier l'emplacement des données sensibles dans le dépôt, les types de données sensibles concernés ainsi que la façon dont ces données sont utilisées. Ces informations peuvent vous aider à définir correctement les autorisations d'accès et de partage. En outre, elles peuvent être utiles dans le cadre d'un plan de surveillance continu.

La protection des données sensibles peut détecter et classer les données sensibles stockées dans un emplacement Cloud Storage, un genre Datastore ou une table BigQuery. Lorsque vous analysez des fichiers dans des emplacements Cloud Storage, la protection des données sensibles prend en charge l'analyse des fichiers binaires, texte, image, Microsoft Word, Microsoft Excel, Microsoft Powerpoint, PDF et Apache Avro. Les fichiers de types non reconnus sont analysés en tant que fichiers binaires. Pour en savoir plus sur les types de fichiers compatibles, consultez la section Types de fichiers compatibles.

Pour inspecter le stockage et les bases de données à la recherche de données sensibles, vous devez spécifier l'emplacement des données et le type de données sensibles que le service de protection des données sensibles doit rechercher. La protection des données sensibles lance une tâche qui inspecte les données à l'emplacement indiqué, puis fournit des informations sur les infoTypes trouvés dans le contenu, les valeurs de probabilité, etc.

Vous pouvez configurer l'inspection du stockage et des bases de données à l'aide de la protection des données sensibles dans la console Google Cloud, via l'API DLP RESTful, ou de manière automatisée à l'aide d'une bibliothèque cliente de protection des données sensibles dans l'un des langages disponibles.

Cette rubrique comprend :

  • Bonnes pratiques pour configurer des analyses de dépôts et de bases de données Google Cloud Storage
  • Des instructions pour configurer une analyse d'inspection à l'aide de la protection des données sensibles dans la console Google Cloud et (éventuellement) pour programmer des analyses d'inspection récurrentes.
  • Exemples de code JSON et de code pour chaque type de dépôt Google Cloud Storage : (Cloud Storage, Firestore en mode Datastore (Datastore) et BigQuery).
  • Présentation détaillée des options de configuration disponibles pour les tâches d'analyse
  • Instructions pour récupérer les résultats d'analyse et gérer les tâches d'analyse créées à partir de chaque requête qui aboutit

Bonnes pratiques

Identifier et hiérarchiser l'analyse

Il est important d'évaluer d'abord vos ressources et d'indiquer celles qui ont la priorité la plus élevée pour l'analyse. Lorsque vous commencez, il est possible que vous ayez un important volume de données à classer, et qu'il soit impossible de toutes les analyser immédiatement. Choisissez d'abord les données qui présentent le risque potentiel le plus élevé (par exemple, les données fréquemment consultées, largement accessibles ou inconnues).

Assurez-vous que la protection des données sensibles peut accéder à vos données

La protection des données sensibles doit pouvoir accéder aux données à analyser. Assurez-vous que le compte de service de protection des données sensibles est autorisé à lire vos ressources.

Limiter la portée de vos premières analyses

Pour de meilleurs résultats, limitez la portée de vos premières tâches plutôt que d'analyser toutes vos données. Commencez par une table, un bucket ou quelques fichiers, puis utilisez l'échantillonnage. En limitant la portée de vos premières analyses, vous pouvez mieux déterminer les détecteurs à activer et les règles d'exclusion éventuellement nécessaires pour réduire le nombre de faux positifs et rendre vos résultats plus pertinents. Évitez d'activer les infoTypes dont vous n'avez pas besoin, car des faux positifs ou des résultats inutilisables peuvent compliquer l'évaluation du risque. Bien qu'utiles dans certains scénarios, les infoTypes tels que DATE, TIME, DOMAIN_NAME et URL correspondent à un large éventail de résultats et peuvent ne pas être utiles pour les analyses de données volumineuses.

Lorsque vous échantillonnez un fichier structuré (tel qu'un fichier CSV, TSV ou Avro), assurez-vous que la taille d'échantillon est suffisamment grande pour couvrir l'en-tête complet du fichier et une ligne de données. Pour en savoir plus, consultez Analyser les fichiers structurés en mode d'analyse structurée.

Programmer vos analyses

Utilisez les déclencheurs de tâches de protection des données sensibles pour exécuter automatiquement des analyses et générer des résultats quotidiens, hebdomadaires ou trimestriels. Ces analyses peuvent également être configurées pour inspecter uniquement les données qui ont été modifiées depuis la dernière analyse, ce qui permet de gagner du temps et de réduire les coûts. L'exécution régulière d'analyses peut vous aider à identifier des tendances ou des anomalies dans vos résultats d'analyse.

Latence du job

Aucun objectif de niveau de service (SLO) n'est garanti pour les tâches et les déclencheurs de tâche. La latence dépend de plusieurs facteurs, y compris la quantité de données à analyser, le dépôt de stockage analysé, le type et le nombre d'infoTypes que vous analysez, la région dans laquelle la tâche est traitée et les ressources informatiques disponibles dans cette région. Par conséquent, la latence des tâches d'inspection ne peut pas être déterminée à l'avance.

Pour réduire la latence des tâches, essayez les solutions suivantes :

  • Si l'échantillonnage est disponible pour votre tâche ou votre déclencheur de tâche, activez-le.
  • Évitez d'activer les infoTypes dont vous n'avez pas besoin. Bien que les éléments suivants soient utiles dans certains scénarios, ces infoTypes peuvent rendre les requêtes beaucoup plus lentes que celles qui ne les incluent pas:

    • PERSON_NAME
    • FEMALE_NAME
    • MALE_NAME
    • FIRST_NAME
    • LAST_NAME
    • DATE_OF_BIRTH
    • LOCATION
    • STREET_ADDRESS
    • ORGANIZATION_NAME
  • Spécifiez toujours les infoTypes explicitement. N'utilisez pas de liste d'infoTypes vide.

  • Si possible, utilisez une autre région de traitement.

Si vous rencontrez toujours des problèmes de latence avec les tâches après avoir essayé ces techniques, envisagez d'utiliser des requêtes content.inspect ou content.deidentify au lieu de tâches. Ces méthodes sont couvertes par le Contrat de niveau de service. Pour en savoir plus, consultez la page Contrat de niveau de service relatif à la protection des données sensibles.

Avant de commencer

Les instructions fournies dans cette rubrique supposent que :

La classification du stockage nécessite le champ d'application OAuth suivant : https://www.googleapis.com/auth/cloud-platform. Pour en savoir plus, consultez la page S'authentifier sur l'API DLP.

Inspecter un emplacement Cloud Storage

Vous pouvez configurer une inspection de la protection des données sensibles d'un emplacement Cloud Storage à l'aide de la console Google Cloud, de l'API DLP via des requêtes REST ou RPC, ou de manière automatisée dans plusieurs langages à l'aide d'une bibliothèque cliente. Pour en savoir plus sur les paramètres inclus dans les exemples de code et JSON suivants, consultez la section Configurer l'inspection du stockage plus loin dans cet article.

La protection des données sensibles s'appuie sur les types d'extensions de fichiers et de médias (MIME) pour identifier les types de fichiers à analyser et les modes d'analyse à appliquer. Par exemple, la protection des données sensibles analyse un fichier .txt en mode texte brut, même s'il s'agit d'un fichier CSV, qui est normalement analysé en mode d'analyse structurée.

Pour configurer une tâche d'analyse d'un bucket Cloud Storage à l'aide de la protection des données sensibles, procédez comme suit:

Console

Cette section explique comment inspecter un bucket ou un dossier Cloud Storage. Si vous souhaitez également que la protection des données sensibles crée une copie anonymisée de vos données, consultez la page Supprimer l'identification des données sensibles stockées dans Cloud Storage à l'aide de la console Google Cloud.

  1. Dans la section "Protection des données sensibles" de la console Google Cloud, accédez à la page Créer une tâche ou un déclencheur de tâche.

    Accéder à la page "Créer une tâche ou un déclencheur de tâche"

  2. Saisissez les informations du job de protection des données sensibles, puis cliquez sur Continuer à chaque étape:

    • Pour l'étape 1 : Choisir les données d'entrée, attribuez un nom à la tâche en saisissant une valeur dans le champ Nom. Dans Emplacement, sélectionnez Cloud Storage dans le menu Type de stockage, puis saisissez l'emplacement des données à analyser. La section Échantillonnage est préconfigurée pour exécuter un exemple d'analyse avec vos données. Vous pouvez ajuster le champ Pourcentage d'objets inclus analysés dans le bucket pour économiser des ressources si vous disposez d'une grande quantité de données. Pour en savoir plus, consultez la section Choisir les données d'entrée.

    • (Facultatif) Pour l'étape 2 : Configurer la détection, vous pouvez configurer les types de données à rechercher, appelés infoTypes. Vous pouvez effectuer votre sélection dans la liste des infoTypes prédéfinis ou sélectionner un modèle, le cas échéant. Pour en savoir plus, consultez la section Configurer la détection.

    • (Facultatif) Pour l'étape 3 : Ajouter des actions, assurez-vous que l'option Avertir par e-mail est activée.

      Activez l'option Enregistrer dans BigQuery pour publier vos résultats relatifs à la protection des données sensibles dans une table BigQuery. Indiquez les éléments suivants :

      • Pour ID du projet, saisissez l'ID du projet dans lequel vos résultats sont stockés.
      • Pour ID de l'ensemble de données, saisissez le nom de l'ensemble de données dans lequel vos résultats sont stockés.
      • (Facultatif) Pour ID de la table, entrez le nom de la table dans laquelle vos résultats sont stockés. Si aucun ID de table n'est spécifié, un nom par défaut est attribué à une nouvelle table semblable à celle-ci : dlp_googleapis_[DATE]_1234567890, où [DATE] représente la date d'exécution de l'analyse. Si vous spécifiez le nom d'une table existante, les résultats y sont ajoutés.
      • (Facultatif) Activez l'option Inclure les guillemets pour inclure les chaînes correspondant à un détecteur d'infoType. Les citations sont potentiellement sensibles. Par conséquent, la protection des données sensibles ne les inclut pas dans les résultats.

      Lorsque des données sont écrites dans une table BigQuery, la facturation et l'utilisation des quotas sont appliquées au projet qui contient la table de destination.

      Si vous souhaitez créer une copie anonymisée de vos données, activez Créer une copie anonymisée. Pour en savoir plus, consultez la page Supprimer l'identification des données sensibles stockées dans Cloud Storage à l'aide de la console Google Cloud.

      Vous pouvez également enregistrer les résultats dans Pub/Sub, Security Command Center, Data Catalog et Cloud Monitoring. Pour en savoir plus, consultez la section Ajouter des actions.

    • (Facultatif) Pour l'étape 4 : Programmer, pour exécuter l'analyse une seule fois, laissez le menu défini sur Aucun. Pour programmer des analyses à exécuter régulièrement, cliquez sur Créer un déclencheur pour exécuter la tâche selon une programmation régulière. Pour en savoir plus, consultez la section Programmer.

  3. Cliquez sur Créer.

  4. Une fois la tâche de protection des données sensibles terminée, vous êtes redirigé vers la page d'informations de la tâche et une notification par e-mail vous est envoyée. Vous pouvez afficher les résultats de l'inspection sur la page des détails de la tâche.

  5. (Facultatif) Si vous avez choisi de publier les résultats liés à la protection des données sensibles dans BigQuery, dans la page Informations sur la tâche, cliquez sur Afficher les résultats dans BigQuery pour ouvrir la table dans l'interface utilisateur Web de BigQuery. Vous pouvez ensuite interroger la table et analyser vos résultats. Pour en savoir plus sur l'interrogation de vos résultats dans BigQuery, consultez la page Interroger les résultats liés à la protection des données sensibles dans BigQuery.

Protocole

Vous trouverez ci-dessous un exemple de code JSON pouvant être envoyé dans une requête POST au point de terminaison REST spécifié pour la protection des données sensibles. Cet exemple de code JSON montre comment utiliser l'API DLP pour inspecter des buckets Cloud Storage. Pour plus d'informations sur les paramètres inclus dans la requête, consultez la section Configurer l'inspection du stockage plus loin dans cette rubrique.

Vous pouvez faire un essai rapide dans APIs Explorer sur la page de référence de content.inspect :

Accéder à APIs Explorer

Gardez à l'esprit qu'une requête réussie, même dans APIs Explorer, entraînera la création d'un déclencheur de tâche planifiée. Pour en savoir plus sur le contrôle des tâches d'analyse, consultez la section Récupérer les résultats d'inspection plus loin sur cette page. Des informations générales sur l'utilisation du format JSON pour envoyer des requêtes à l'API DLP sont disponibles dans le guide de démarrage JSON.

Entrée JSON :

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://[BUCKET-NAME]/*"
        },
        "bytesLimitPerFile":"1073741824"
      },
      "timespanConfig":{
        "startTime":"2017-11-13T12:34:29.965633345Z",
        "endTime":"2018-01-05T04:45:04.240912125Z"
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "excludeInfoTypes":false,
      "includeQuote":true,
      "minLikelihood":"LIKELY"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"[DATASET-ID]"
            }
          }
        }
      }
    ]
  }
}

Sortie JSON :

{
  "name":"projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type":"INSPECT_JOB",
  "state":"PENDING",
  "inspectDetails":{
    "requestedOptions":{
      "snapshotInspectTemplate":{

      },
      "jobConfig":{
        "storageConfig":{
          "cloudStorageOptions":{
            "fileSet":{
              "url":"gs://[BUCKET-NAME]/*"
            },
            "bytesLimitPerFile":"1073741824"
          },
          "timespanConfig":{
            "startTime":"2017-11-13T12:34:29.965633345Z",
            "endTime":"2018-01-05T04:45:04.240912125Z"
          }
        },
        "inspectConfig":{
          "infoTypes":[
            {
              "name":"PHONE_NUMBER"
            }
          ],
          "minLikelihood":"LIKELY",
          "limits":{

          },
          "includeQuote":true
        },
        "actions":[
          {
            "saveFindings":{
              "outputConfig":{
                "table":{
                  "projectId":"[PROJECT-ID]",
                  "datasetId":"[DATASET-ID]",
                  "tableId":"[NEW-TABLE-ID]"
                }
              }
            }
          }
        ]
      }
    }
  },
  "createTime":"2018-11-07T18:01:14.225Z"
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CloudStorageOptions.FileSet;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectGcsFile {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsUri = "gs://" + "your-bucket-name" + "/path/to/your/file.txt";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectGcsFile(projectId, gcsUri, topicId, subscriptionId);
  }

  // Inspects a file in a Google Cloud Storage Bucket.
  public static void inspectGcsFile(
      String projectId, String gcsUri, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the GCS file to be inspected.
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder().setFileSet(FileSet.newBuilder().setUrl(gcsUri)).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setCloudStorageOptions(cloudStorageOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addAllInfoTypes(infoTypes).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The name of the bucket where the file resides.
// const bucketName = 'YOUR-BUCKET';

// The path to the file within the bucket to inspect.
// Can contain wildcards, e.g. "my-image.*"
// const fileName = 'my-image.png';

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The customInfoTypes of information to match
// const customInfoTypes = [{ infoType: { name: 'DICT_TYPE' }, dictionary: { wordList: { words: ['foo', 'bar', 'baz']}}},
//   { infoType: { name: 'REGEX_TYPE' }, regex: {pattern: '\\(\\d{3}\\) \\d{3}-\\d{4}'}}];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

async function inspectGCSFile() {
  // Get reference to the file to be inspected
  const storageItem = {
    cloudStorageOptions: {
      fileSet: {url: `gs://${bucketName}/${fileName}`},
    },
  };

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        customInfoTypes: customInfoTypes,
        minLikelihood: minLikelihood,
        limits: {
          maxFindingsPerRequest: maxFindings,
        },
      },
      storageConfig: storageItem,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Create a GCS File inspection job and wait for it to complete
  const [topicResponse] = await pubsub.topic(topicId).get();
  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  // Get the job's ID
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });

  setTimeout(() => {
    console.log('Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectGCSFile();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import threading
from typing import List, Optional

import google.cloud.dlp
import google.cloud.pubsub

def inspect_gcs_file(
    project: str,
    bucket: str,
    filename: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    min_likelihood: Optional[str] = None,
    max_findings: Optional[int] = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze a file on GCS.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket containing the file, as a string.
        filename: The name of the file in the bucket, including the path, as a
            string; e.g. 'images/myfile.png'.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a storage_config containing the file's URL.
    url = f"gs://{bucket}/{filename}"
    storage_config = {"cloud_storage_options": {"file_set": {"url": url}}}

    # Convert the project id into full resource ids.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectGCSFile searches for the given info types in the given file.
func inspectGCSFile(w io.Writer, projectID string, infoTypeNames []string, customDictionaries []string, customRegexes []string, pubSubTopic, pubSubSub, bucketName, fileName string) error {
	// projectID := "my-project-id"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}
	// customDictionaries := []string{...}
	// customRegexes := []string{...}
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// bucketName := "my-bucket"
	// fileName := "my-file.txt"

	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}
	// Convert the custom dictionary word lists and custom regexes to a list of CustomInfoTypes.
	var customInfoTypes []*dlppb.CustomInfoType
	for idx, it := range customDictionaries {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_DICTIONARY_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Dictionary_{
				Dictionary: &dlppb.CustomInfoType_Dictionary{
					Source: &dlppb.CustomInfoType_Dictionary_WordList_{
						WordList: &dlppb.CustomInfoType_Dictionary_WordList{
							Words: strings.Split(it, ","),
						},
					},
				},
			},
		})
	}
	for idx, it := range customRegexes {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_REGEX_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Regex_{
				Regex: &dlppb.CustomInfoType_Regex{
					Pattern: it,
				},
			},
		})
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("pubsub.NewClient: %w", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	if exists, err := t.Exists(ctx); err != nil {
		return fmt.Errorf("t.Exists: %w", err)
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	if exists, err := s.Exists(ctx); err != nil {
		return fmt.Errorf("s.Exists: %w", err)
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return fmt.Errorf("CreateSubscription: %w", err)
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				// StorageConfig describes where to find the data.
				StorageConfig: &dlppb.StorageConfig{
					Type: &dlppb.StorageConfig_CloudStorageOptions{
						CloudStorageOptions: &dlppb.CloudStorageOptions{
							FileSet: &dlppb.CloudStorageOptions_FileSet{
								Url: "gs://" + bucketName + "/" + fileName,
							},
						},
					},
				},
				// InspectConfig describes what fields to look for.
				InspectConfig: &dlppb.InspectConfig{
					InfoTypes:       infoTypes,
					CustomInfoTypes: customInfoTypes,
					MinLikelihood:   dlppb.Likelihood_POSSIBLE,
					Limits: &dlppb.InspectConfig_FindingLimits{
						MaxFindingsPerRequest: 10,
					},
					IncludeQuote: true,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the inspect job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Cloud not get job: %v", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
		}
		for _, s := range r {
			fmt.Fprintf(w, "  Found %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

PHP

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect a file stored on Google Cloud Storage , using Pub/Sub for job status notifications.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string $bucketId          The name of the bucket where the file resides
 * @param string $file              The path to the file within the bucket to inspect. Can contain wildcards e.g. "my-image.*"
 * @param int    $maxFindings       (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function inspect_gcs(
    string $callingProjectId,
    string $topicId,
    string $subscriptionId,
    string $bucketId,
    string $file,
    int $maxFindings = 0
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $creditCardNumberInfoType = (new InfoType())
        ->setName('CREDIT_CARD_NUMBER');
    $infoTypes = [$personNameInfoType, $creditCardNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Construct items to be inspected
    $fileSet = (new FileSet())
        ->setUrl('gs://' . $bucketId . '/' . $file);

    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet($fileSet);

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions($cloudStorageOptions);

    // Construct the inspect config object
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct inspect job config to run
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                print('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf('  Found %s instance(s) of infoType %s' . PHP_EOL, $infoTypeStat->getCount(), $infoTypeStat->getInfoType()->getName());
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

C#

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectGoogleCloudStorage
{
    public static DlpJob InspectGCS(
        string projectId,
        Likelihood minLikelihood,
        int maxFindings,
        bool includeQuote,
        IEnumerable<InfoType> infoTypes,
        IEnumerable<CustomInfoType> customInfoTypes,
        string bucketName,
        string topicId,
        string subscriptionId)
    {
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = new StorageConfig
            {
                CloudStorageOptions = new CloudStorageOptions
                {
                    FileSet = new CloudStorageOptions.Types.FileSet { Url = $"gs://{bucketName}/*.txt" },
                    BytesLimitPerFile = 1073741824
                },
            },
            InspectConfig = new InspectConfig
            {
                InfoTypes = { infoTypes },
                CustomInfoTypes = { customInfoTypes },
                ExcludeInfoTypes = false,
                IncludeQuote = includeQuote,
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                MinLikelihood = minLikelihood
            },
            Actions =
                {
                    new Google.Cloud.Dlp.V2.Action
                    {
                        // Send results to Pub/Sub topic
                        PubSub = new Google.Cloud.Dlp.V2.Action.Types.PublishToPubSub
                        {
                            Topic = topicId,
                        }
                    }
                }
        };

        // Issue Create Dlp Job Request
        var client = DlpServiceClient.Create();
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            Parent = new LocationName(projectId, "global").ToString(),
        };

        // We need created job name
        var dlpJob = client.CreateDlpJob(request);

        // Get a pub/sub subscription and listen for DLP results
        var fireEvent = new ManualResetEventSlim();

        var subscriptionName = new SubscriptionName(projectId, subscriptionId);
        var subscriber = SubscriberClient.CreateAsync(subscriptionName).Result;
        subscriber.StartAsync(
            (pubSubMessage, cancellationToken) =>
            {
                // Given a message that we receive on this subscription, we should either acknowledge or decline it
                if (pubSubMessage.Attributes["DlpJobName"] == dlpJob.Name)
                {
                    fireEvent.Set();
                    return Task.FromResult(SubscriberClient.Reply.Ack);
                }

                return Task.FromResult(SubscriberClient.Reply.Nack);
            });

        // We block here until receiving a signal from a separate thread that is waiting on a message indicating receiving a result of Dlp job
        if (fireEvent.Wait(TimeSpan.FromMinutes(1)))
        {
            // Stop the thread that is listening to messages as a result of StartAsync call earlier
            subscriber.StopAsync(CancellationToken.None).Wait();

            // Now we can inspect full job results
            var job = client.GetDlpJob(new GetDlpJobRequest { DlpJobName = new DlpJobName(projectId, dlpJob.Name) });

            // Inspect Job details
            Console.WriteLine($"Processed bytes: {job.InspectDetails.Result.ProcessedBytes}");
            Console.WriteLine($"Total estimated bytes: {job.InspectDetails.Result.TotalEstimatedBytes}");
            var stats = job.InspectDetails.Result.InfoTypeStats;
            Console.WriteLine("Found stats:");
            foreach (var stat in stats)
            {
                Console.WriteLine($"{stat.InfoType.Name}");
            }

            return job;
        }

        throw new InvalidOperationException("The wait failed on timeout");
    }
}

Inspecter un genre Datastore

Vous pouvez configurer l'inspection d'un genre Datastore à l'aide de la console Google Cloud, de l'API DLP via des requêtes REST ou RPC, ou de manière automatisée (dans plusieurs langages à l'aide d'une bibliothèque cliente).

Pour configurer une tâche d'analyse d'un genre Datastore à l'aide de la protection des données sensibles, procédez comme suit:

Console

Pour configurer une tâche d'analyse d'un genre Datastore à l'aide de la protection des données sensibles, procédez comme suit:

  1. Dans la section "Protection des données sensibles" de la console Google Cloud, accédez à la page Créer une tâche ou un déclencheur de tâche.

    Accéder à la page "Créer une tâche ou un déclencheur de tâche"

  2. Saisissez les informations du job de protection des données sensibles, puis cliquez sur Continuer à chaque étape:

    • Pour l'étape 1 : Choisir les données d'entrée, saisissez les identifiants du projet, l'espace de noms (facultatif) et le genre que vous souhaitez analyser. Pour en savoir plus, consultez la section Choisir les données d'entrée.

    • (Facultatif) Pour l'étape 2 : Configurer la détection, vous pouvez configurer les types de données à rechercher, appelés infoTypes. Vous pouvez effectuer votre sélection dans la liste des infoTypes prédéfinis ou sélectionner un modèle, le cas échéant. Pour en savoir plus, consultez la section Configurer la détection.

    • (Facultatif) Pour l'étape 3 : Ajouter des actions, assurez-vous que l'option Avertir par e-mail est activée.

      Activez l'option Enregistrer dans BigQuery pour publier vos résultats relatifs à la protection des données sensibles dans une table BigQuery. Indiquez les éléments suivants :

      • Pour ID du projet, saisissez l'ID du projet dans lequel vos résultats sont stockés.
      • Pour ID de l'ensemble de données, saisissez le nom de l'ensemble de données dans lequel vos résultats sont stockés.
      • (Facultatif) Pour ID de la table, entrez le nom de la table dans laquelle vos résultats sont stockés. Si aucun ID de table n'est spécifié, un nom par défaut est attribué à la nouvelle table, comme dans l'exemple suivant : dlp_googleapis_[DATE]_1234567890. Si vous spécifiez le nom d'une table existante, les résultats y sont ajoutés.

      Lorsque des données sont écrites dans une table BigQuery, la facturation et l'utilisation des quotas sont appliquées au projet qui contient la table de destination.

      Pour en savoir plus sur les autres actions répertoriées, consultez la section Ajouter des actions.

    • (Facultatif) Pour l'étape 4 : Programmer, configurez une période ou une programmation en sélectionnant Spécifier la période ou Créer un déclencheur pour exécuter la tâche selon une programmation régulière. Pour en savoir plus, consultez la section Programmer.

  3. Cliquez sur Créer.

  4. Une fois la tâche de protection des données sensibles terminée, vous êtes redirigé vers la page d'informations de la tâche et une notification par e-mail vous est envoyée. Vous pouvez afficher les résultats de l'inspection sur la page des informations sur la tâche.

  5. (Facultatif) Si vous avez choisi de publier les résultats liés à la protection des données sensibles dans BigQuery, dans la page Informations sur la tâche, cliquez sur Afficher les résultats dans BigQuery pour ouvrir la table dans l'interface utilisateur Web de BigQuery. Vous pouvez ensuite interroger la table et analyser vos résultats. Pour en savoir plus sur l'interrogation de vos résultats dans BigQuery, consultez la page Interroger les résultats liés à la protection des données sensibles dans BigQuery.

Protocole

Voici un exemple de code JSON qui peut être envoyé dans une requête POST au point de terminaison REST spécifié pour l'API DLP. Cet exemple de code JSON montre comment inspecter des genres Datastore à l'aide de l'API DLP. Pour plus d'informations sur les paramètres inclus dans la requête, consultez la section Configurer l'inspection du stockage plus loin dans cette rubrique.

Vous pouvez faire un essai rapide dans APIs Explorer sur la page de référence de dlpJobs.create :

Accéder à APIs Explorer

Gardez à l'esprit qu'une requête réussie, même dans APIs Explorer, entraînera la création d'un déclencheur de tâche planifiée. Pour en savoir plus sur le contrôle des tâches d'analyse, consultez la section Récupérer les résultats d'inspection, plus loin dans cette rubrique. Des informations générales sur l'utilisation du format JSON pour envoyer des requêtes à l'API DLP sont disponibles dans le guide de démarrage JSON.

Entrée JSON :

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "datastoreOptions":{
        "kind":{
          "name":"Example-Kind"
        },
        "partitionId":{
          "namespaceId":"[NAMESPACE-ID]",
          "projectId":"[PROJECT-ID]"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "excludeInfoTypes":false,
      "includeQuote":true,
      "minLikelihood":"LIKELY"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"[BIGQUERY-DATASET-NAME]",
              "tableId":"[BIGQUERY-TABLE-NAME]"
            }
          }
        }
      }
    ]
  }
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DatastoreOptions;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.KindExpression;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PartitionId;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectDatastoreEntity {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String datastoreNamespace = "your-datastore-namespace";
    String datastoreKind = "your-datastore-kind";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    insepctDatastoreEntity(projectId, datastoreNamespace, datastoreKind, topicId, subscriptionId);
  }

  // Inspects a Datastore Entity.
  public static void insepctDatastoreEntity(
      String projectId,
      String datastoreNamespce,
      String datastoreKind,
      String topicId,
      String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the Datastore entity to be inspected.
      PartitionId partitionId =
          PartitionId.newBuilder()
              .setProjectId(projectId)
              .setNamespaceId(datastoreNamespce)
              .build();
      KindExpression kindExpression = KindExpression.newBuilder().setName(datastoreKind).build();

      DatastoreOptions datastoreOptions =
          DatastoreOptions.newBuilder().setKind(kindExpression).setPartitionId(partitionId).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setDatastoreOptions(datastoreOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addAllInfoTypes(infoTypes).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the target Datastore is stored under
// This may or may not equal the calling project ID
// const dataProjectId = 'my-project';

// (Optional) The ID namespace of the Datastore document to inspect.
// To ignore Datastore namespaces, set this to an empty string ('')
// const namespaceId = '';

// The kind of the Datastore entity to inspect.
// const kind = 'Person';

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The customInfoTypes of information to match
// const customInfoTypes = [{ infoType: { name: 'DICT_TYPE' }, dictionary: { wordList: { words: ['foo', 'bar', 'baz']}}},
//   { infoType: { name: 'REGEX_TYPE' }, regex: {pattern: '\\(\\d{3}\\) \\d{3}-\\d{4}'}}];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

async function inspectDatastore() {
  // Construct items to be inspected
  const storageItems = {
    datastoreOptions: {
      partitionId: {
        projectId: dataProjectId,
        namespaceId: namespaceId,
      },
      kind: {
        name: kind,
      },
    },
  };

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        customInfoTypes: customInfoTypes,
        minLikelihood: minLikelihood,
        limits: {
          maxFindingsPerRequest: maxFindings,
        },
      },
      storageConfig: storageItems,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };
  // Run inspect-job creation request
  const [topicResponse] = await pubsub.topic(topicId).get();
  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  // Wait for DLP job to fully complete
  setTimeout(() => {
    console.log('Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectDatastore();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import threading
from typing import List, Optional

import google.cloud.dlp
import google.cloud.pubsub

def inspect_datastore(
    project: str,
    datastore_project: str,
    kind: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    namespace_id: str = None,
    min_likelihood: Optional[int] = None,
    max_findings: Optional[int] = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze Datastore data.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        datastore_project: The Google Cloud project id of the target Datastore.
        kind: The kind of the Datastore entity to inspect, e.g. 'Person'.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        namespace_id: The namespace of the Datastore document, if applicable.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a storage_config containing the target Datastore info.
    storage_config = {
        "datastore_options": {
            "partition_id": {
                "project_id": datastore_project,
                "namespace_id": namespace_id,
            },
            "kind": {"name": kind},
        }
    }

    # Convert the project id into full resource ids.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)

    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectDatastore searches for the given info types in the given dataset kind.
func inspectDatastore(w io.Writer, projectID string, infoTypeNames []string, customDictionaries []string, customRegexes []string, pubSubTopic, pubSubSub, dataProject, namespaceID, kind string) error {
	// projectID := "my-project-id"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}
	// customDictionaries := []string{...}
	// customRegexes := []string{...}
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// namespaceID := "namespace-id"
	// kind := "MyKind"

	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}
	// Convert the custom dictionary word lists and custom regexes to a list of CustomInfoTypes.
	var customInfoTypes []*dlppb.CustomInfoType
	for idx, it := range customDictionaries {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_DICTIONARY_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Dictionary_{
				Dictionary: &dlppb.CustomInfoType_Dictionary{
					Source: &dlppb.CustomInfoType_Dictionary_WordList_{
						WordList: &dlppb.CustomInfoType_Dictionary_WordList{
							Words: strings.Split(it, ","),
						},
					},
				},
			},
		})
	}
	for idx, it := range customRegexes {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_REGEX_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Regex_{
				Regex: &dlppb.CustomInfoType_Regex{
					Pattern: it,
				},
			},
		})
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("pubsub.NewClient: %w", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	if exists, err := t.Exists(ctx); err != nil {
		return fmt.Errorf("t.Exists: %w", err)
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	if exists, err := s.Exists(ctx); err != nil {
		return fmt.Errorf("s.Exists: %w", err)
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return fmt.Errorf("CreateSubscription: %w", err)
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				// StorageConfig describes where to find the data.
				StorageConfig: &dlppb.StorageConfig{
					Type: &dlppb.StorageConfig_DatastoreOptions{
						DatastoreOptions: &dlppb.DatastoreOptions{
							PartitionId: &dlppb.PartitionId{
								ProjectId:   dataProject,
								NamespaceId: namespaceID,
							},
							Kind: &dlppb.KindExpression{
								Name: kind,
							},
						},
					},
				},
				// InspectConfig describes what fields to look for.
				InspectConfig: &dlppb.InspectConfig{
					InfoTypes:       infoTypes,
					CustomInfoTypes: customInfoTypes,
					MinLikelihood:   dlppb.Likelihood_POSSIBLE,
					Limits: &dlppb.InspectConfig_FindingLimits{
						MaxFindingsPerRequest: 10,
					},
					IncludeQuote: true,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the inspect job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Error getting completed job: %v\n", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
			return
		}
		for _, s := range r {
			fmt.Fprintf(w, "  Found %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

PHP

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DatastoreOptions;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\KindExpression;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\PartitionId;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect Datastore, using Pub/Sub for job status notifications.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $dataProjectId     The project ID containing the target Datastore
 * @param string $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string $kind              The datastore kind to inspect
 * @param string $namespaceId       The ID namespace of the Datastore document to inspect
 * @param int    $maxFindings       (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function inspect_datastore(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $kind,
    string $namespaceId,
    int $maxFindings = 0
): void {
    // Instantiate clients
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $infoTypes = [$personNameInfoType, $phoneNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Construct items to be inspected
    $partitionId = (new PartitionId())
        ->setProjectId($dataProjectId)
        ->setNamespaceId($namespaceId);

    $kindExpression = (new KindExpression())
        ->setName($kind);

    $datastoreOptions = (new DatastoreOptions())
        ->setPartitionId($partitionId)
        ->setKind($kindExpression);

    // Construct the inspect config object
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes($infoTypes)
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits);

    // Construct the storage config object
    $storageConfig = (new StorageConfig())
        ->setDatastoreOptions($datastoreOptions);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct inspect job config to run
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                print('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf('  Found %s instance(s) of infoType %s' . PHP_EOL, $infoTypeStat->getCount(), $infoTypeStat->getInfoType()->getName());
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state.');
    }
}

C#

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.BigQuery.V2;
using Google.Cloud.Dlp.V2;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Collections.Generic;
using System.Threading;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectCloudDataStore
{
    public static object Inspect(
        string projectId,
        Likelihood minLikelihood,
        int maxFindings,
        bool includeQuote,
        string kindName,
        string namespaceId,
        IEnumerable<InfoType> infoTypes,
        IEnumerable<CustomInfoType> customInfoTypes,
        string datasetId,
        string tableId)
    {
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = new StorageConfig
            {
                DatastoreOptions = new DatastoreOptions
                {
                    Kind = new KindExpression { Name = kindName },
                    PartitionId = new PartitionId
                    {
                        NamespaceId = namespaceId,
                        ProjectId = projectId,
                    }
                },
                TimespanConfig = new StorageConfig.Types.TimespanConfig
                {
                    StartTime = Timestamp.FromDateTime(System.DateTime.UtcNow.AddYears(-1)),
                    EndTime = Timestamp.FromDateTime(System.DateTime.UtcNow)
                }
            },

            InspectConfig = new InspectConfig
            {
                InfoTypes = { infoTypes },
                CustomInfoTypes = { customInfoTypes },
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                ExcludeInfoTypes = false,
                IncludeQuote = includeQuote,
                MinLikelihood = minLikelihood
            },
            Actions =
                {
                    new Google.Cloud.Dlp.V2.Action
                    {
                        // Save results in BigQuery Table
                        SaveFindings = new Google.Cloud.Dlp.V2.Action.Types.SaveFindings
                        {
                            OutputConfig = new OutputStorageConfig
                            {
                                Table = new Google.Cloud.Dlp.V2.BigQueryTable
                                {
                                    ProjectId = projectId,
                                    DatasetId = datasetId,
                                    TableId = tableId
                                }
                            }
                        },
                    }
                }
        };

        // Issue Create Dlp Job Request
        var client = DlpServiceClient.Create();
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            Parent = new LocationName(projectId, "global").ToString(),
        };

        // We need created job name
        var dlpJob = client.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Make sure the job finishes before inspecting the results.
        // Alternatively, we can inspect results opportunistically, but
        // for testing purposes, we want consistent outcome
        var finishedJob = EnsureJobFinishes(projectId, jobName);
        var bigQueryClient = BigQueryClient.Create(projectId);
        var table = bigQueryClient.GetTable(datasetId, tableId);

        // Return only first page of 10 rows
        Console.WriteLine("DLP v2 Results:");
        var firstPage = table.ListRows(new ListRowsOptions { StartIndex = 0, PageSize = 10 });
        foreach (var item in firstPage)
        {
            Console.WriteLine($"\t {item[""]}");
        }

        return finishedJob;
    }

    private static DlpJob EnsureJobFinishes(string projectId, string jobName)
    {
        var client = DlpServiceClient.Create();
        var request = new GetDlpJobRequest
        {
            DlpJobName = new DlpJobName(projectId, jobName),
        };

        // Simple logic that gives the job 5*30 sec at most to complete - for testing purposes only
        var numOfAttempts = 5;
        do
        {
            var dlpJob = client.GetDlpJob(request);
            numOfAttempts--;
            if (dlpJob.State != DlpJob.Types.JobState.Running)
            {
                return dlpJob;
            }

            Thread.Sleep(TimeSpan.FromSeconds(30));
        } while (numOfAttempts > 0);

        throw new InvalidOperationException("Job did not complete in time");
    }
}

Inspecter une table BigQuery

Vous pouvez configurer l'inspection d'une table BigQuery à l'aide de la protection des données sensibles via des requêtes REST, ou automatiser le processus par le biais d'une bibliothèque cliente (disponible dans plusieurs langages).

Pour configurer une tâche d'analyse d'une table BigQuery à l'aide de la protection des données sensibles, procédez comme suit:

Console

Pour configurer une tâche d'analyse d'une table BigQuery à l'aide de la protection des données sensibles, procédez comme suit:

  1. Dans la section "Protection des données sensibles" de la console Google Cloud, accédez à la page Créer une tâche ou un déclencheur de tâche.

    Accéder à la page "Créer une tâche ou un déclencheur de tâche"

  2. Saisissez les informations du job de protection des données sensibles, puis cliquez sur Continuer à chaque étape:

    • Pour l'étape 1 : Choisir les données d'entrée, attribuez un nom à la tâche en saisissant une valeur dans le champ Nom. Dans Emplacement, sélectionnez BigQuery dans le menu Type de stockage, puis saisissez les informations correspondant à la table à analyser.

      La section Échantillonnage est préconfigurée pour exécuter un exemple d'analyse sur vos données. Vous pouvez ajuster les champs Limiter les lignes par et Nombre maximal de lignes pour économiser des ressources si vous disposez d'une grande quantité de données. Pour en savoir plus, consultez la section Choisir les données d'entrée.

    • (Facultatif) Si vous souhaitez pouvoir associer chaque résultat à la ligne qui le contient, renseignez le champ Champs d'identification.

      Saisissez les noms des colonnes qui identifient de manière unique chaque ligne de la table. Si nécessaire, utilisez la notation par points pour spécifier les champs imbriqués. Vous pouvez ajouter autant de champs que vous le souhaitez.

      Vous devez également activer l'action Enregistrer dans BigQuery pour exporter les résultats vers BigQuery. Lorsque les résultats sont exportés vers BigQuery, chaque résultat contient les valeurs respectives des champs d'identification. Pour en savoir plus, consultez la section identifyingFields.

    • (Facultatif) Pour l'étape 2 : Configurer la détection, vous pouvez configurer les types de données à rechercher, appelés infoTypes. Vous pouvez effectuer votre sélection dans la liste des infoTypes prédéfinis ou sélectionner un modèle, le cas échéant. Pour en savoir plus, consultez la section Configurer la détection.

    • (Facultatif) Pour l'étape 3 : Ajouter des actions, assurez-vous que l'option Avertir par e-mail est activée.

      Activez l'option Enregistrer dans BigQuery pour publier vos résultats relatifs à la protection des données sensibles dans une table BigQuery. Indiquez les éléments suivants :

      • Pour ID du projet, saisissez l'ID du projet dans lequel vos résultats sont stockés.
      • Pour ID de l'ensemble de données, saisissez le nom de l'ensemble de données dans lequel vos résultats sont stockés.
      • (Facultatif) Pour ID de la table, entrez le nom de la table dans laquelle vos résultats sont stockés. Si aucun ID de table n'est spécifié, un nom par défaut est attribué à la nouvelle table, comme dans l'exemple suivant : dlp_googleapis_[DATE]_1234567890. Si vous spécifiez le nom d'une table existante, les résultats y sont ajoutés.

      Lorsque des données sont écrites dans une table BigQuery, la facturation et l'utilisation des quotas sont appliquées au projet qui contient la table de destination.

      Vous pouvez également enregistrer les résultats dans Pub/Sub, Security Command Center et Data Catalog. Pour en savoir plus, consultez la section Ajouter des actions.

    • (Facultatif) Pour l'étape 4 : Programmer, pour exécuter l'analyse une seule fois, laissez le menu défini sur Aucun. Pour programmer des analyses à exécuter régulièrement, cliquez sur Créer un déclencheur pour exécuter la tâche selon une programmation régulière. Pour en savoir plus, consultez la section Programmer.

  3. Cliquez sur Créer.

  4. Une fois la tâche de protection des données sensibles terminée, vous êtes redirigé vers la page d'informations de la tâche et une notification par e-mail vous est envoyée. Vous pouvez afficher les résultats de l'inspection sur la page des informations sur la tâche.

  5. (Facultatif) Si vous avez choisi de publier les résultats liés à la protection des données sensibles dans BigQuery, dans la page Informations sur la tâche, cliquez sur Afficher les résultats dans BigQuery pour ouvrir la table dans l'interface utilisateur Web de BigQuery. Vous pouvez ensuite interroger la table et analyser vos résultats. Pour en savoir plus sur l'interrogation de vos résultats dans BigQuery, consultez la page Interroger les résultats liés à la protection des données sensibles dans BigQuery.

Protocole

Voici un exemple de code JSON qui peut être envoyé dans une requête POST au point de terminaison REST spécifié pour l'API DLP. Cet exemple de code JSON montre comment utiliser l'API DLP pour inspecter des tables BigQuery. Pour plus d'informations sur les paramètres inclus dans la requête, consultez la section Configurer l'inspection du stockage plus loin dans cette rubrique.

Vous pouvez faire un essai rapide dans APIs Explorer sur la page de référence de dlpJobs.create :

Accéder à APIs Explorer

Gardez à l'esprit qu'une requête réussie, même dans APIs Explorer, entraînera la création d'un déclencheur de tâche planifiée. Pour en savoir plus sur le contrôle des tâches d'analyse, consultez la section Récupérer les résultats d'inspection plus loin sur cette page. Des informations générales sur l'utilisation du format JSON pour envoyer des requêtes à l'API DLP sont disponibles dans le guide de démarrage JSON.

Entrée JSON :

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "bigQueryOptions":{
        "tableReference":{
          "projectId":"[PROJECT-ID]",
          "datasetId":"[BIGQUERY-DATASET-NAME]",
          "tableId":"[BIGQUERY-TABLE-NAME]"
        },
        "identifyingFields":[
          {
            "name":"id"
          }
        ]
      },
      "timespanConfig":{
        "startTime":"2017-11-13T12:34:29.965633345Z ",
        "endTime":"2018-01-05T04:45:04.240912125Z "
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "excludeInfoTypes":false,
      "includeQuote":true,
      "minLikelihood":"LIKELY"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"[BIGQUERY-DATASET-NAME]",
              "tableId":"[BIGQUERY-TABLE-NAME]"
            },
            "outputSchema": "BASIC_COLUMNS"
          }
        }
      }
    ]
  }
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.BigQueryOptions;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectBigQueryTable {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String bigQueryDatasetId = "your-bigquery-dataset-id";
    String bigQueryTableId = "your-bigquery-table-id";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectBigQueryTable(projectId, bigQueryDatasetId, bigQueryTableId, topicId, subscriptionId);
  }

  // Inspects a BigQuery Table
  public static void inspectBigQueryTable(
      String projectId,
      String bigQueryDatasetId,
      String bigQueryTableId,
      String topicId,
      String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the BigQuery table to be inspected.
      BigQueryTable tableReference =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(bigQueryDatasetId)
              .setTableId(bigQueryTableId)
              .build();

      BigQueryOptions bigQueryOptions =
          BigQueryOptions.newBuilder().setTableReference(tableReference).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setBigQueryOptions(bigQueryOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addAllInfoTypes(infoTypes).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const dataProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The customInfoTypes of information to match
// const customInfoTypes = [{ infoType: { name: 'DICT_TYPE' }, dictionary: { wordList: { words: ['foo', 'bar', 'baz']}}},
//   { infoType: { name: 'REGEX_TYPE' }, regex: {pattern: '\\(\\d{3}\\) \\d{3}-\\d{4}'}}];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

async function inspectBigquery() {
  // Construct item to be inspected
  const storageItem = {
    bigQueryOptions: {
      tableReference: {
        projectId: dataProjectId,
        datasetId: datasetId,
        tableId: tableId,
      },
    },
  };

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        customInfoTypes: customInfoTypes,
        minLikelihood: minLikelihood,
        limits: {
          maxFindingsPerRequest: maxFindings,
        },
      },
      storageConfig: storageItem,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Run inspect-job creation request
  const [topicResponse] = await pubsub.topic(topicId).get();
  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  // Wait for DLP job to fully complete
  setTimeout(() => {
    console.log('Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}

await inspectBigquery();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import threading
from typing import List, Optional

import google.cloud.dlp
import google.cloud.pubsub

def inspect_bigquery(
    project: str,
    bigquery_project: str,
    dataset_id: str,
    table_id: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    min_likelihood: Optional[int] = None,
    max_findings: Optional[int] = None,
    timeout: int = 500,
) -> None:
    """Uses the Data Loss Prevention API to analyze BigQuery data.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bigquery_project: The Google Cloud project id of the target table.
        dataset_id: The id of the target BigQuery dataset.
        table_id: The id of the target BigQuery table.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a storage_config containing the target Bigquery info.
    storage_config = {
        "big_query_options": {
            "table_reference": {
                "project_id": bigquery_project,
                "dataset_id": dataset_id,
                "table_id": table_id,
            }
        }
    }

    # Convert the project id into full resource ids.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            "Info type: {}; Count: {}".format(
                                finding.info_type.name, finding.count
                            )
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectBigquery searches for the given info types in the given Bigquery dataset table.
func inspectBigquery(w io.Writer, projectID string, infoTypeNames []string, customDictionaries []string, customRegexes []string, pubSubTopic, pubSubSub, dataProject, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}
	// customDictionaries := []string{...}
	// customRegexes := []string{...}
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// dataProject := "my-data-project-ID"
	// datasetID := "my_dataset"
	// tableID := "mytable"

	ctx := context.Background()

	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}
	// Convert the custom dictionary word lists and custom regexes to a list of CustomInfoTypes.
	var customInfoTypes []*dlppb.CustomInfoType
	for idx, it := range customDictionaries {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_DICTIONARY_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Dictionary_{
				Dictionary: &dlppb.CustomInfoType_Dictionary{
					Source: &dlppb.CustomInfoType_Dictionary_WordList_{
						WordList: &dlppb.CustomInfoType_Dictionary_WordList{
							Words: strings.Split(it, ","),
						},
					},
				},
			},
		})
	}
	for idx, it := range customRegexes {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_REGEX_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Regex_{
				Regex: &dlppb.CustomInfoType_Regex{
					Pattern: it,
				},
			},
		})
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("pubsub.NewClient: %w", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	if exists, err := t.Exists(ctx); err != nil {
		return fmt.Errorf("t.Exists: %w", err)
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	if exists, err := s.Exists(ctx); err != nil {
		return fmt.Errorf("s.Exits: %w", err)
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return fmt.Errorf("CreateSubscription: %w", err)
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				// StorageConfig describes where to find the data.
				StorageConfig: &dlppb.StorageConfig{
					Type: &dlppb.StorageConfig_BigQueryOptions{
						BigQueryOptions: &dlppb.BigQueryOptions{
							TableReference: &dlppb.BigQueryTable{
								ProjectId: dataProject,
								DatasetId: datasetID,
								TableId:   tableID,
							},
						},
					},
				},
				// InspectConfig describes what fields to look for.
				InspectConfig: &dlppb.InspectConfig{
					InfoTypes:       infoTypes,
					CustomInfoTypes: customInfoTypes,
					MinLikelihood:   dlppb.Likelihood_POSSIBLE,
					Limits: &dlppb.InspectConfig_FindingLimits{
						MaxFindingsPerRequest: 10,
					},
					IncludeQuote: true,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the inspect job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Error getting completed job: %v\n", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
			return
		}
		for _, s := range r {
			fmt.Fprintf(w, "  Found %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

PHP

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryOptions;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect a BigQuery table , using Pub/Sub for job status notifications.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $dataProjectId     The project ID containing the target Datastore
 * @param string $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string $datasetId         The ID of the dataset to inspect
 * @param string $tableId           The ID of the table to inspect
 * @param int    $maxFindings       (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function inspect_bigquery(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $datasetId,
    string $tableId,
    int $maxFindings = 0
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $creditCardNumberInfoType = (new InfoType())
        ->setName('CREDIT_CARD_NUMBER');
    $infoTypes = [$personNameInfoType, $creditCardNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Construct items to be inspected
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($dataProjectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    $bigQueryOptions = (new BigQueryOptions())
        ->setTableReference($bigqueryTable);

    $storageConfig = (new StorageConfig())
        ->setBigQueryOptions($bigQueryOptions);

    // Construct the inspect config object
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct inspect job config to run
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                print('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

C#

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.BigQuery.V2;
using Google.Cloud.Dlp.V2;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Collections.Generic;
using System.Threading;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectBigQuery
{
    public static object Inspect(
        string projectId,
        Likelihood minLikelihood,
        int maxFindings,
        bool includeQuote,
        IEnumerable<FieldId> identifyingFields,
        IEnumerable<InfoType> infoTypes,
        IEnumerable<CustomInfoType> customInfoTypes,
        string datasetId,
        string tableId)
    {
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = new StorageConfig
            {
                BigQueryOptions = new BigQueryOptions
                {
                    TableReference = new Google.Cloud.Dlp.V2.BigQueryTable
                    {
                        ProjectId = projectId,
                        DatasetId = datasetId,
                        TableId = tableId,
                    },
                    IdentifyingFields =
                        {
                            identifyingFields
                        }
                },

                TimespanConfig = new StorageConfig.Types.TimespanConfig
                {
                    StartTime = Timestamp.FromDateTime(System.DateTime.UtcNow.AddYears(-1)),
                    EndTime = Timestamp.FromDateTime(System.DateTime.UtcNow)
                }
            },

            InspectConfig = new InspectConfig
            {
                InfoTypes = { infoTypes },
                CustomInfoTypes = { customInfoTypes },
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                ExcludeInfoTypes = false,
                IncludeQuote = includeQuote,
                MinLikelihood = minLikelihood
            },
            Actions =
                {
                    new Google.Cloud.Dlp.V2.Action
                    {
                        // Save results in BigQuery Table
                        SaveFindings = new Google.Cloud.Dlp.V2.Action.Types.SaveFindings
                        {
                            OutputConfig = new OutputStorageConfig
                            {
                                Table = new Google.Cloud.Dlp.V2.BigQueryTable
                                {
                                    ProjectId = projectId,
                                    DatasetId = datasetId,
                                    TableId = tableId
                                }
                            }
                        },
                    }
                }
        };

        // Issue Create Dlp Job Request
        var client = DlpServiceClient.Create();
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            Parent = new LocationName(projectId, "global").ToString(),
        };

        // We need created job name
        var dlpJob = client.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Make sure the job finishes before inspecting the results.
        // Alternatively, we can inspect results opportunistically, but
        // for testing purposes, we want consistent outcome
        var finishedJob = EnsureJobFinishes(projectId, jobName);
        var bigQueryClient = BigQueryClient.Create(projectId);
        var table = bigQueryClient.GetTable(datasetId, tableId);

        // Return only first page of 10 rows
        Console.WriteLine("DLP v2 Results:");
        var firstPage = table.ListRows(new ListRowsOptions { StartIndex = 0, PageSize = 10 });
        foreach (var item in firstPage)
        {
            Console.WriteLine($"\t {item[""]}");
        }

        return finishedJob;
    }

    private static DlpJob EnsureJobFinishes(string projectId, string jobName)
    {
        var client = DlpServiceClient.Create();
        var request = new GetDlpJobRequest
        {
            DlpJobName = new DlpJobName(projectId, jobName),
        };

        // Simple logic that gives the job 5*30 sec at most to complete - for testing purposes only
        var numOfAttempts = 5;
        do
        {
            var dlpJob = client.GetDlpJob(request);
            numOfAttempts--;
            if (dlpJob.State != DlpJob.Types.JobState.Running)
            {
                return dlpJob;
            }

            Thread.Sleep(TimeSpan.FromSeconds(30));
        } while (numOfAttempts > 0);

        throw new InvalidOperationException("Job did not complete in time");
    }
}

Configurer l'inspection du stockage

Pour inspecter un emplacement Cloud Storage, un genre Datastore ou une table BigQuery, vous devez envoyer une requête à la méthode projects.dlpJobs.create de l'API DLP. Cette requête doit au moins indiquer l'emplacement des données à analyser et indiquer les éléments à analyser. En plus de ces paramètres obligatoires, vous pouvez également spécifier l'emplacement où les résultats d'analyse doivent être consignés, les seuils de taille et de probabilité, etc. Une requête réussie entraîne la création d'une instance d'objet DlpJob, décrite dans la section Récupérer les résultats d'inspection.

Les options de configuration disponibles sont résumées ici :

  • Objet InspectJobConfig : contient les informations de configuration pour la tâche d'inspection. Notez que l'objet InspectJobConfig est également utilisé par l'objet JobTriggers pour programmer la création d'objets DlpJob. Cet objet comprend :

    • Objet StorageConfig : obligatoire. Contient des informations détaillées sur le dépôt de stockage à analyser :

      • L'un des éléments suivants doit être inclus dans l'objet StorageConfig, en fonction du type de dépôt de stockage analysé :

      • Objet CloudStorageOptions : contient des informations concernant le bucket Cloud Storage à analyser.

      • Objet DatastoreOptions : contient des informations concernant l'ensemble de données Datastore à analyser.

      • Objet BigQueryOptions : contient des informations sur la table BigQuery (et éventuellement les champs d'identification) à analyser. Cet objet permet également d'échantillonner les résultats. Pour en savoir plus, consultez la section Activer l'échantillonnage des résultats ci-dessous.

      • Objet TimespanConfig : facultatif. Permet de spécifier l'intervalle de temps concerné par l'analyse.

    • Objet InspectConfig : obligatoire. Permet de spécifier les éléments à analyser, tels que les infoTypes et les valeurs de probabilité.

      • Objets InfoType : obligatoires. Permettent de spécifier une ou plusieurs valeurs infoType à analyser.
      • Énumération Likelihood : facultative. Lorsque cette option est définie, la protection des données sensibles ne renvoie que les résultats égaux ou supérieurs à ce seuil de probabilité. Si cette énumération n'est pas définie, la valeur par défaut est POSSIBLE.
      • Objet FindingLimits : facultatif. Lorsqu'il est défini, cet objet vous permet de spécifier une limite pour le nombre de résultats renvoyés.
      • Paramètre includeQuote : facultatif. La valeur par défaut est false. Lorsque ce paramètre est défini sur truetrue, chaque résultat inclut une citation contextuelle des données qui l'ont déclenché.
      • Paramètre excludeInfoTypes : facultatif. La valeur par défaut est false. Lorsque ce paramètre est défini sur true, les résultats d'analyse excluent les informations de type dans les résultats.
      • Objets CustomInfoType : un ou plusieurs infoTypes personnalisés créés par l'utilisateur. Pour plus d'informations sur la création d'infoTypes personnalisés, consultez la page Créer des détecteurs d'infoTypes personnalisés.
    • Chaîne inspectTemplateName : facultative. Cette chaîne permet de spécifier un modèle à utiliser pour insérer des valeurs par défaut dans l'objet InspectConfig. Si vous avez déjà spécifié InspectConfig, les valeurs du modèle seront fusionnées.

    • Objets Action : facultatif. Permettent de spécifier une ou plusieurs actions à exécuter à la fin de la tâche. Les actions sont exécutées dans l'ordre dans lequel elles ont été répertoriées. C'est à ce niveau que vous devez indiquer l'emplacement où écrire les résultats, ou encore spécifier si vous souhaitez publier une notification dans un sujet Pub/Sub.

  • jobId : facultatif. Identifiant de la tâche renvoyée par la protection des données sensibles. Si jobId est omis ou vide, le système crée un ID pour la tâche. Si cet élément est spécifié, la tâche se voit attribuer cette valeur d'ID. L'ID de la tâche doit être unique et ne contenir que des majuscules, des minuscules, des chiffres et des traits d'union. Cela signifie qu'il doit correspondre à l'expression régulière suivante : [a-zA-Z\\d-]+.

Limiter la quantité de contenu inspecté

Si vous analysez des tables BigQuery ou des buckets Cloud Storage, la protection des données sensibles permet d'analyser un sous-ensemble de l'ensemble de données. Cela permet d'obtenir un échantillon des résultats d'analyse sans toutefois générer les coûts potentiels d'une analyse sur l'ensemble de données complet.

Les sections ci-après contiennent des informations sur la limitation de la taille des analyses Cloud Storage et des analyses BigQuery.

Limiter les analyses Cloud Storage

Vous pouvez activer l'échantillonnage dans Cloud Storage et limiter la quantité de données à analyser. Vous avez la possibilité de demander à l'API DLP d'analyser uniquement les fichiers d'une certaine taille, uniquement certains types de fichiers et uniquement un certain pourcentage du nombre total de fichiers de l'ensemble d'entrée. Pour cela, indiquez les champs facultatifs suivants dans CloudStorageOptions :

  • bytesLimitPerFile : définit le nombre maximal d'octets à analyser à partir d'un fichier. Si la taille du fichier analysé est supérieure à la valeur indiquée, les octets au-delà de ce nombre sont omis. La définition de ce champ n'a aucune incidence sur certains types de fichiers. Pour en savoir plus, consultez la section Limites du nombre d'octets analysés par fichier.
  • fileTypes[] : répertorie l'élément FileTypes à inclure dans l'analyse. Cette liste peut être définie sur un ou plusieurs des types énumérés ci-après.
  • filesLimitPercent : limite le nombre de fichiers à analyser au pourcentage spécifié de l'entrée FileSet. Si les valeurs 0 ou 100 sont indiquées, cela signifie qu'il n'y a aucune limite.
  • sampleMethod : méthode d'échantillonnage à appliquer si tous les octets ne sont pas analysés. Spécifier cette valeur n'a de sens que si elle est utilisée conjointement avec bytesLimitPerFile. Si cette valeur n'est pas renseignée, l'analyse commence par le haut. Ce champ peut être défini sur l'une des deux valeurs suivantes :
    • TOP : l'analyse commence par le haut.
    • RANDOM_START : pour chaque fichier dont la taille dépasse la taille spécifiée dans bytesLimitPerFile, sélectionnez le décalage de manière aléatoire pour lancer l'analyse. Les octets analysés sont contigus.

Les exemples suivants illustrent comment utiliser l'API DLP pour analyser un sous-ensemble à 90% d'un bucket Cloud Storage à la recherche de noms de personnes. L'analyse commence à un emplacement aléatoire dans l'ensemble de données et inclut uniquement les fichiers texte de moins de 200 octets.

C#

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

public class InspectStorageWithSampling
{
    public static async Task<DlpJob> InspectAsync(
        string projectId,
        string gcsUri,
        string topicId,
        string subId,
        Likelihood minLikelihood = Likelihood.Possible,
        IEnumerable<InfoType> infoTypes = null)
    {

        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Construct Storage config by specifying the GCS file to be inspected
        // and sample method.
        var storageConfig = new StorageConfig
        {
            CloudStorageOptions = new CloudStorageOptions
            {
                FileSet = new CloudStorageOptions.Types.FileSet
                {
                    Url = gcsUri
                },
                BytesLimitPerFile = 200,
                FileTypes = { new FileType[] { FileType.Csv } },
                FilesLimitPercent = 90,
                SampleMethod = CloudStorageOptions.Types.SampleMethod.RandomStart
            }
        };

        // Construct the Inspect Config and specify the type of info the inspection
        // will look for.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[] { new InfoType { Name = "PERSON_NAME" } }
            },
            IncludeQuote = true,
            MinLikelihood = minLikelihood
        };

        // Construct the pubsub action.
        var actions = new Action[]
        {
            new Action
            {
                PubSub = new Action.Types.PublishToPubSub
                {
                    Topic = $"projects/{projectId}/topics/{topicId}"
                }
            }
        };

        // Construct the inspect job config using above created objects.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Issue Create Dlp Job Request
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            ParentAsLocationName = new LocationName(projectId, "global"),
        };

        // We keep the name of the job that we just created.
        var dlpJob = dlp.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Listen to pub/sub for the job
        var subscriptionName = new SubscriptionName(projectId, subId);
        var subscriber = await SubscriberClient.CreateAsync(
            subscriptionName);

        await subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == jobName)
            {
                subscriber.StopAsync(cancel);
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        // Get the latest state of the job from the service
        var resultJob = dlp.GetDlpJob(new GetDlpJobRequest
        {
            DlpJobName = DlpJobName.Parse(jobName)
        });

        // Parse the response and process results.
        System.Console.WriteLine($"Job status: {resultJob.State}");
        System.Console.WriteLine($"Job Name: {resultJob.Name}");

        var result = resultJob.InspectDetails.Result;
        foreach (var infoType in result.InfoTypeStats)
        {
            System.Console.WriteLine($"Info Type: {infoType.InfoType.Name}");
            System.Console.WriteLine($"Count: {infoType.Count}");
        }
        return resultJob;
    }
}

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectGcsFileWithSampling inspects a storage with sampling
func inspectGcsFileWithSampling(w io.Writer, projectID, gcsUri, topicID, subscriptionId string) error {
	// projectId := "your-project-id"
	// gcsUri := "gs://" + "your-bucket-name" + "/path/to/your/file.txt"
	// topicID := "your-pubsub-topic-id"
	// subscriptionId := "your-pubsub-subscription-id"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}
	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the GCS file to be inspected and sampling configuration
	var cloudStorageOptions = &dlppb.CloudStorageOptions{
		FileSet: &dlppb.CloudStorageOptions_FileSet{
			Url: gcsUri,
		},
		BytesLimitPerFile: int64(200),
		FileTypes: []dlppb.FileType{
			dlppb.FileType_TEXT_FILE,
		},
		FilesLimitPercent: int32(90),
		SampleMethod:      dlppb.CloudStorageOptions_RANDOM_START,
	}

	var storageConfig = &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_CloudStorageOptions{
			CloudStorageOptions: cloudStorageOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	// Specify how the content should be inspected.
	var inspectConfig = &dlppb.InspectConfig{
		InfoTypes: []*dlppb.InfoType{
			{Name: "PERSON_NAME"},
		},
		ExcludeInfoTypes: true,
		IncludeQuote:     true,
		MinLikelihood:    dlppb.Likelihood_POSSIBLE,
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(topicID)
	if exists, err := t.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, topicID); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(subscriptionId)
	if exists, err := s.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, subscriptionId, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + topicID

	var action = &dlppb.Action{
		Action: &dlppb.Action_PubSub{
			PubSub: &dlppb.Action_PublishToPubSub{
				Topic: topic,
			},
		},
	}

	// Configure the long running job we want the service to perform.
	var inspectJobConfig = &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Use the client to send the request.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Job Created: %v", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Error getting completed job: %v\n", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
			return
		}
		for _, s := range r {
			fmt.Fprintf(w, "\nFound %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return err
	}
	return nil

}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CloudStorageOptions.FileSet;
import com.google.privacy.dlp.v2.CloudStorageOptions.SampleMethod;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FileType;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class InspectGcsFileWithSampling {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsUri = "gs://" + "your-bucket-name" + "/path/to/your/file.txt";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectGcsFileWithSampling(projectId, gcsUri, topicId, subscriptionId);
  }

  // Inspects a file in a Google Cloud Storage Bucket.
  public static void inspectGcsFileWithSampling(
      String projectId, String gcsUri, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the GCS file to be inspected and sampling configuration
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder()
              .setFileSet(FileSet.newBuilder().setUrl(gcsUri))
              .setBytesLimitPerFile(200)
              .addFileTypes(FileType.TEXT_FILE)
              .setFilesLimitPercent(90)
              .setSampleMethod(SampleMethod.RANDOM_START)
              .build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setCloudStorageOptions(cloudStorageOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PERSON_NAME").build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addInfoTypes(infoType)
              .setExcludeInfoTypes(true)
              .setIncludeQuote(true)
              .setMinLikelihood(Likelihood.POSSIBLE)
              .build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The gcs file path
// const gcsUri = 'gs://" + "your-bucket-name" + "/path/to/your/file.txt';

// Specify the type of info the inspection will look for.
// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
// const infoTypes = [{ name: 'PERSON_NAME' }];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// DLP Job max time (in milliseconds)
const DLP_JOB_WAIT_TIME = 15 * 1000 * 60;

async function inspectGcsFileSampling() {
  // Specify the GCS file to be inspected and sampling configuration
  const storageItemConfig = {
    cloudStorageOptions: {
      fileSet: {url: gcsUri},
      bytesLimitPerFile: 200,
      filesLimitPercent: 90,
      fileTypes: [DLP.protos.google.privacy.dlp.v2.FileType.TEXT_FILE],
      sampleMethod:
        DLP.protos.google.privacy.dlp.v2.CloudStorageOptions.SampleMethod
          .RANDOM_START,
    },
  };

  // Specify how the content should be inspected.
  const inspectConfig = {
    infoTypes: infoTypes,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.POSSIBLE,
    includeQuote: true,
    excludeInfoTypes: true,
  };

  // Specify the action that is triggered when the job completes.
  const actions = [
    {
      pubSub: {
        topic: `projects/${projectId}/topics/${topicId}`,
      },
    },
  ];

  // Create the request for the job configured above.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: inspectConfig,
      storageConfig: storageItemConfig,
      actions: actions,
    },
  };

  // Use the client to send the request.
  const [topicResponse] = await pubsub.topic(topicId).get();

  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);

  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    // Set up the timeout
    const timer = setTimeout(() => {
      reject(new Error('Timeout'));
    }, DLP_JOB_WAIT_TIME);

    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        clearTimeout(timer);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      clearTimeout(timer);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}

await inspectGcsFileSampling();

PHP

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryOptions\SampleMethod;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect storage with sampling.
 * The following examples demonstrate using the Cloud DLP API to scan a 90% subset of a
 * Cloud Storage bucket for person names. The scan starts from a random location in the dataset
 * and only includes text files under 200 bytes.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $gcsUri            Google Cloud Storage file url.
 * @param string $topicId           The ID of the Pub/Sub topic to notify once the job completes.
 * @param string $subscriptionId    The ID of the Pub/Sub subscription to use when listening for job.
 */
function inspect_gcs_with_sampling(
    // TODO(developer): Replace sample parameters before running the code.
    string $callingProjectId,
    string $gcsUri = 'gs://GOOGLE_STORAGE_BUCKET_NAME/dlp_sample.csv',
    string $topicId = 'dlp-pubsub-topic',
    string $subscriptionId = 'dlp_subcription'
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Construct the items to be inspected.
    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet((new FileSet())
            ->setUrl($gcsUri))
        ->setBytesLimitPerFile(200)
        ->setFilesLimitPercent(90)
        ->setSampleMethod(SampleMethod::RANDOM_START);

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions($cloudStorageOptions);

    // Specify the type of info the inspection will look for.
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $emailAddressInfoType = (new InfoType())
        ->setName('EMAIL_ADDRESS');
    $cardNumberInfoType = (new InfoType())
        ->setName('CREDIT_CARD_NUMBER');
    $infoTypes = [$phoneNumberInfoType, $emailAddressInfoType, $cardNumberInfoType];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Construct the action to run when job completes.
    $action = (new Action())
        ->setPubSub((new PublishToPubSub())
            ->setTopic($topic->name()));

    // Construct inspect job config to run.
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJob
    ]);

    // Poll Pub/Sub using exponential backoff until job finishes.
    // Consider using an asynchronous execution model such as Cloud Functions.
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $job = $dlp->getDlpJob($job->getName());
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while.
            }
        }
        printf('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds.
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout.

    // Print finding counts.
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import threading
from typing import List

import google.cloud.dlp
import google.cloud.pubsub

def inspect_gcs_with_sampling(
    project: str,
    bucket: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str] = None,
    file_types: List[str] = None,
    min_likelihood: str = None,
    max_findings: int = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze files in GCS by
    limiting the amount of data to be scanned.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket containing the file, as a string.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing infoTypes to look for.
            A full list of info type categories can be fetched from the API.
        file_types: Type of files in gcs bucket where the inspection would happen.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Specify how the content should be inspected. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "exclude_info_types": True,
        "include_quote": True,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Setting default file types as CSV files
    if not file_types:
        file_types = ["CSV"]

    # Construct a cloud_storage_options dictionary with the bucket's URL.
    url = f"gs://{bucket}/*"
    storage_config = {
        "cloud_storage_options": {
            "file_set": {"url": url},
            "bytes_limit_per_file": 200,
            "file_types": file_types,
            "files_limit_percent": 90,
            "sample_method": "RANDOM_START",
        }
    }

    # Tell the API where to send a notification when the job is complete.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into full resource ids.
    parent = f"projects/{project}/locations/global"

    # Call the API
    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message):
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    print("Findings:")
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

REST

Entrée JSON :

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://[BUCKET-NAME]/*"
        },
        "bytesLimitPerFile":"200",
        "fileTypes":[
          "TEXT_FILE"
        ],
        "filesLimitPercent":90,
        "sampleMethod":"RANDOM_START"
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PERSON_NAME"
        }
      ],
      "excludeInfoTypes":true,
      "includeQuote":true,
      "minLikelihood":"POSSIBLE"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"testingdlp"
            },
            "outputSchema":"BASIC_COLUMNS"
          }
        }
      }
    ]
  }
}

Après avoir envoyé l'entrée JSON dans une requête POST au point de terminaison spécifié, une tâche de protection des données sensibles est créée et l'API envoie la réponse suivante.

Sortie JSON :

{
  "name":"projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type":"INSPECT_JOB",
  "state":"PENDING",
  "inspectDetails":{
    "requestedOptions":{
      "snapshotInspectTemplate":{

      },
      "jobConfig":{
        "storageConfig":{
          "cloudStorageOptions":{
            "fileSet":{
              "url":"gs://[BUCKET_NAME]/*"
            },
            "bytesLimitPerFile":"200",
            "fileTypes":[
              "TEXT_FILE"
            ],
            "sampleMethod":"TOP",
            "filesLimitPercent":90
          }
        },
        "inspectConfig":{
          "infoTypes":[
            {
              "name":"PERSON_NAME"
            }
          ],
          "minLikelihood":"POSSIBLE",
          "limits":{

          },
          "includeQuote":true,
          "excludeInfoTypes":true
        },
        "actions":[
          {
            "saveFindings":{
              "outputConfig":{
                "table":{
                  "projectId":"[PROJECT-ID]",
                  "datasetId":"[DATASET-ID]",
                  "tableId":"[TABLE-ID]"
                },
                "outputSchema":"BASIC_COLUMNS"
              }
            }
          }
        ]
      }
    }
  },
  "createTime":"2018-05-30T22:22:08.279Z"
}

Limiter les analyses BigQuery

Pour activer l'échantillonnage dans BigQuery et limiter la quantité de données à analyser, spécifiez les champs facultatifs suivants dans BigQueryOptions :

  • rowsLimit : nombre maximal de lignes à analyser. Si la table possède un nombre de lignes supérieur à cette valeur, les lignes au-delà de cette valeur sont omises. Si cette valeur n'est pas définie ou est égale à 0, toutes les lignes sont analysées.
  • rowsLimitPercent: pourcentage maximal de lignes à analyser (entre 0 et 100). Les lignes restantes sont omises. Si cette valeur est définie sur 0 ou 100, aucune limite ne s'applique. La valeur par défaut est 0. Vous ne pouvez spécifier qu'un seul rowsLimit ou rowsLimitPercent.

  • sampleMethod : méthode d'échantillonnage à utiliser si toutes les lignes ne doivent pas être analysées. Si cette valeur n'est pas renseignée, l'analyse commence par le haut. Ce champ peut être défini sur l'une des deux valeurs suivantes :

    • TOP : l'analyse commence par le haut.
    • RANDOM_START : l'analyse commence à partir d'une ligne sélectionnée de manière aléatoire.
  • excludedFields: champs de table qui identifient de manière unique les colonnes à exclure de la lecture. Cela permet de réduire la quantité de données analysées et le coût global d'une tâche d'inspection.

  • includedFields: champs de table qui identifient de manière unique des lignes spécifiques de la table à analyser.

TimespanConfig est une autre fonctionnalité utile pour limiter les données analysées, en particulier lors de l'analyse de tables partitionnées. TimespanConfig vous permet de filtrer les lignes de table BigQuery en fournissant des valeurs d'heure de début et de fin pour définir une période. La protection des données sensibles n'analyse alors que les lignes contenant un horodatage au cours de cette période.

Les exemples suivants illustrent l'utilisation de l'API DLP pour analyser un sous-ensemble de 1 000 lignes d'une table BigQuery. L'analyse commence à partir d'une ligne aléatoire.

Go

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectBigQueryTableWithSampling inspect bigQueries for sensitive data with sampling
func inspectBigQueryTableWithSampling(w io.Writer, projectID, topicID, subscriptionID string) error {
	// projectId := "your-project-id"
	// topicID := "your-pubsub-topic-id"
	// or provide a topicID name to create one
	// subscriptionID := "your-pubsub-subscription-id"
	// or provide a subscription name to create one

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the BigQuery table to be inspected.
	tableReference := &dlppb.BigQueryTable{
		ProjectId: "bigquery-public-data",
		DatasetId: "usa_names",
		TableId:   "usa_1910_current",
	}

	bigQueryOptions := &dlppb.BigQueryOptions{
		TableReference: tableReference,
		RowsLimit:      int64(10000),
		SampleMethod:   dlppb.BigQueryOptions_RANDOM_START,
		IdentifyingFields: []*dlppb.FieldId{
			{Name: "name"},
		},
	}

	// Provide storage config with BigqueryOptions
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_BigQueryOptions{
			BigQueryOptions: bigQueryOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoTypes := []*dlppb.InfoType{
		{Name: "PERSON_NAME"},
	}

	// Specify how the content should be inspected.
	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:    infoTypes,
		IncludeQuote: true,
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(topicID)
	if exists, err := t.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, topicID); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(subscriptionID)
	if exists, err := s.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, subscriptionID, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := fmt.Sprintf("projects/%s/topics/%s", projectID, topicID)

	action := &dlppb.Action{
		Action: &dlppb.Action_PubSub{
			PubSub: &dlppb.Action_PublishToPubSub{
				Topic: topic,
			},
		},
	}

	// Configure the long running job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Use the client to send the request.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Job Created: %v", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	c, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(c, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()
	})
	if err != nil {
		return err
	}

	resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
		Name: j.GetName(),
	})
	if err != nil {
		return err
	}
	r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
	if len(r) == 0 {
		fmt.Fprintf(w, "No results")
		return err
	}
	for _, s := range r {
		fmt.Fprintf(w, "\nFound %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
	}
	return nil

}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.BigQueryOptions;
import com.google.privacy.dlp.v2.BigQueryOptions.SampleMethod;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class InspectBigQueryTableWithSampling {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectBigQueryTableWithSampling(projectId, topicId, subscriptionId);
  }

  // Inspects a BigQuery Table
  public static void inspectBigQueryTableWithSampling(
      String projectId, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the BigQuery table to be inspected.
      BigQueryTable tableReference =
          BigQueryTable.newBuilder()
              .setProjectId("bigquery-public-data")
              .setDatasetId("usa_names")
              .setTableId("usa_1910_current")
              .build();

      BigQueryOptions bigQueryOptions =
          BigQueryOptions.newBuilder()
              .setTableReference(tableReference)
              .setRowsLimit(1000)
              .setSampleMethod(SampleMethod.RANDOM_START)
              .addIdentifyingFields(FieldId.newBuilder().setName("name"))
              .build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setBigQueryOptions(bigQueryOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PERSON_NAME").build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addInfoTypes(infoType).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const dataProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// DLP Job max time (in milliseconds)
const DLP_JOB_WAIT_TIME = 15 * 1000 * 60;

async function inspectBigqueryWithSampling() {
  // Specify the type of info the inspection will look for.
  // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
  const infoTypes = [{name: 'PERSON_NAME'}];

  // Specify the BigQuery options required for inspection.
  const storageItem = {
    bigQueryOptions: {
      tableReference: {
        projectId: dataProjectId,
        datasetId: datasetId,
        tableId: tableId,
      },
      rowsLimit: 1000,
      sampleMethod:
        DLP.protos.google.privacy.dlp.v2.BigQueryOptions.SampleMethod
          .RANDOM_START,
      includedFields: [{name: 'name'}],
    },
  };

  // Specify the action that is triggered when the job completes.
  const actions = [
    {
      pubSub: {
        topic: `projects/${projectId}/topics/${topicId}`,
      },
    },
  ];

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        includeQuote: true,
      },
      storageConfig: storageItem,
      actions: actions,
    },
  };
  // Use the client to send the request.
  const [topicResponse] = await pubsub.topic(topicId).get();

  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);

  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;

  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    // Set up the timeout
    const timer = setTimeout(() => {
      reject(new Error('Timeout'));
    }, DLP_JOB_WAIT_TIME);

    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        clearTimeout(timer);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      clearTimeout(timer);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}

await inspectBigqueryWithSampling();

PHP

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\BigQueryOptions;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryOptions\SampleMethod;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect BigQuery for sensitive data with sampling.
 * The following examples demonstrate using the Cloud Data Loss Prevention
 * API to scan a 1000-row subset of a BigQuery table. The scan starts from
 * a random row.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $topicId           The Pub/Sub topic ID to notify once the job is completed.
 * @param string $subscriptionId    The Pub/Sub subscription ID to use when listening for job.
 * @param string $projectId         The Google Cloud Project ID.
 * @param string $datasetId         The BigQuery Dataset ID.
 * @param string $tableId           The BigQuery Table ID to be inspected.
 */
function inspect_bigquery_with_sampling(
    string $callingProjectId,
    string $topicId,
    string $subscriptionId,
    string $projectId,
    string $datasetId,
    string $tableId
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Specify the BigQuery table to be inspected.
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($projectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    $bigQueryOptions = (new BigQueryOptions())
        ->setTableReference($bigqueryTable)
        ->setRowsLimit(1000)
        ->setSampleMethod(SampleMethod::RANDOM_START)
        ->setIdentifyingFields([
            (new FieldId())
                ->setName('name')
        ]);

    $storageConfig = (new StorageConfig())
        ->setBigQueryOptions($bigQueryOptions);

    // Specify the type of info the inspection will look for.
    // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $infoTypes = [$personNameInfoType];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Specify the action that is triggered when the job completes.
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Configure the long running job we want the service to perform.
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJob
    ]);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $job = $dlp->getDlpJob($job->getName());
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        printf('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import threading

import google.cloud.dlp
import google.cloud.pubsub

def inspect_bigquery_table_with_sampling(
    project: str,
    topic_id: str,
    subscription_id: str,
    min_likelihood: str = None,
    max_findings: str = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze BigQuery data by limiting
    the amount of data to be scanned.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Specify how the content should be inspected. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": [{"name": "PERSON_NAME"}],
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Specify the BigQuery table to be inspected.
    # Here we are using public bigquery table.
    table_reference = {
        "project_id": "bigquery-public-data",
        "dataset_id": "usa_names",
        "table_id": "usa_1910_current",
    }

    # Construct a storage_config containing the target BigQuery info.
    storage_config = {
        "big_query_options": {
            "table_reference": table_reference,
            "rows_limit": 1000,
            "sample_method": "RANDOM_START",
            "identifying_fields": [{"name": "name"}],
        }
    }

    # Tell the API where to send a notification when the job is complete.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into full resource ids.
    parent = f"projects/{project}/locations/global"

    # Call the API
    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")

                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()

        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

C#

Pour savoir comment installer et utiliser la bibliothèque cliente pour la protection des données sensibles, consultez Bibliothèques clientes pour la protection des données sensibles.

Pour vous authentifier auprès de la protection des données sensibles, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectBigQueryWithSampling
{
    public static async Task<DlpJob> InspectAsync(
        string projectId,
        int maxFindings,
        bool includeQuote,
        string topicId,
        string subId,
        Likelihood minLikelihood = Likelihood.Possible,
        IEnumerable<FieldId> identifyingFields = null,
        IEnumerable<InfoType> infoTypes = null)
    {

        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Construct Storage config.
        var storageConfig = new StorageConfig
        {
            BigQueryOptions = new BigQueryOptions
            {
                TableReference = new BigQueryTable
                {
                    ProjectId = "bigquery-public-data",
                    DatasetId = "usa_names",
                    TableId = "usa_1910_current",
                },
                IdentifyingFields =
                {
                    identifyingFields ?? new FieldId[] { new FieldId { Name = "name" } }
                },
                RowsLimit = 100,
                SampleMethod = BigQueryOptions.Types.SampleMethod.RandomStart
            }
        };

        // Construct the inspect config.
        var inspectConfig = new InspectConfig
        {
            InfoTypes = { infoTypes ?? new InfoType[] { new InfoType { Name = "PERSON_NAME" } } },
            Limits = new FindingLimits
            {
                MaxFindingsPerRequest = maxFindings,
            },
            IncludeQuote = includeQuote,
            MinLikelihood = minLikelihood
        };

        // Construct the pubsub action.
        var actions = new Action[]
        {
            new Action
            {
                PubSub = new Action.Types.PublishToPubSub
                {
                    Topic = $"projects/{projectId}/topics/{topicId}"
                }
            }
        };

        // Construct the inspect job config using the actions.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Issue Create Dlp Job Request.
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            ParentAsLocationName = new LocationName(projectId, "global"),
        };

        // We keep the name of the job that we just created.
        var dlpJob = dlp.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Listen to pub/sub for the job.
        var subscriptionName = new SubscriptionName(projectId, subId);
        var subscriber = await SubscriberClient.CreateAsync(
            subscriptionName);

        // SimpleSubscriber runs your message handle function on multiple threads to maximize throughput.
        await subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == jobName)
            {
                subscriber.StopAsync(cancel);
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        // Get the latest state of the job from the service.
        var resultJob = dlp.GetDlpJob(new GetDlpJobRequest
        {
            DlpJobName = DlpJobName.Parse(jobName)
        });

        // Parse the response and process results.
        System.Console.WriteLine($"Job status: {resultJob.State}");
        System.Console.WriteLine($"Job Name: {resultJob.Name}");
        var result = resultJob.InspectDetails.Result;
        foreach (var infoType in result.InfoTypeStats)
        {
            System.Console.WriteLine($"Info Type: {infoType.InfoType.Name}");
            System.Console.WriteLine($"Count: {infoType.Count}");
        }
        return resultJob;
    }
}

REST

Entrée JSON :

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "bigQueryOptions":{
        "tableReference":{
          "projectId":"bigquery-public-data",
          "datasetId":"usa_names",
          "tableId":"usa_1910_current"
        },
        "rowsLimit":"1000",
        "sampleMethod":"RANDOM_START",
        "includedFields":[
          {
            "name":"name"
          }
        ]
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"FIRST_NAME"
        }
      ],
      "includeQuote":true
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"testingdlp",
              "tableId":"bqsample3"
            },
            "outputSchema":"BASIC_COLUMNS"
          }
        }
      }
    ]
  }
}

Après avoir envoyé l'entrée JSON dans une requête POST au point de terminaison spécifié, une tâche de protection des données sensibles est créée et l'API envoie la réponse suivante.

Sortie JSON :

{
  "name": "projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type": "INSPECT_JOB",
  "state": "PENDING",
  "inspectDetails": {
    "requestedOptions": {
      "snapshotInspectTemplate": {},
      "jobConfig": {
        "storageConfig": {
          "bigQueryOptions": {
            "tableReference": {
              "projectId": "bigquery-public-data",
              "datasetId": "usa_names",
              "tableId": "usa_1910_current"
            },
            "rowsLimit": "1000",
            "sampleMethod": "RANDOM_START",
            "includedFields": [
              {
                "name": "name"
              }
            ]
          }
        },
        "inspectConfig": {
          "infoTypes": [
            {
              "name": "FIRST_NAME"
            }
          ],
          "limits": {},
          "includeQuote": true
        },
        "actions": [
          {
            "saveFindings": {
              "outputConfig": {
                "table": {
                  "projectId": "[PROJECT-ID]",
                  "datasetId": "[DATASET-ID]",
                  "tableId": "bqsample"
                },
                "outputSchema": "BASIC_COLUMNS"
              }
            }
          }
        ]
      }
    },
    "result": {}
  },
  "createTime": "2022-11-04T18:53:48.350Z"
}

Une fois la tâche d'inspection terminée et ses résultats traités par BigQuery, les résultats de l'analyse sont disponibles dans la table de sortie BigQuery spécifiée. Pour en savoir plus sur la récupération des résultats d'inspection, reportez-vous à la section suivante.

Récupérer les résultats d'inspection

Vous pouvez récupérer un résumé d'un objet DlpJob à l'aide de la méthode projects.dlpJobs.get. L'objet DlpJob renvoyé contient son objet InspectDataSourceDetails, qui contient lui-même un résumé de la configuration de la tâche (RequestedOptions), et un résumé des résultats de la tâche (Result). Le résumé des résultats comprend :

  • processedBytes : le volume de données total traité (en octets).
  • totalEstimatedBytes : une estimation du nombre d'octets restants à traiter.
  • Objet InfoTypeStatistics : des statistiques sur le nombre d'instances de chaque infoType identifié au cours de la tâche d'inspection.

Pour obtenir les résultats complets du job d'inspection, plusieurs options s'offrent à vous. Selon l'objet Action que vous avez choisi, les tâches d'inspection peuvent être :

  • Enregistrées dans BigQuery (objet SaveFindings) dans la table spécifiée. Avant de visualiser ou d'analyser les résultats, assurez-vous que la tâche est bien terminée à l'aide de la méthode projects.dlpJobs.get décrite ci-après. Notez que vous pouvez spécifier un schéma de stockage des résultats à l'aide de l'objet OutputSchema.
  • Publiées dans un sujet Pub/Sub (objet PublishToPubSub). Le sujet doit avoir accordé des droits de publication au compte de service de protection des données sensibles qui exécute la DlpJob envoyant les notifications.
  • Publiée dans Security Command Center.
  • Publié dans Data Catalog.
  • Publié dans Cloud Monitoring.

Pour vous aider à filtrer de grandes quantités de données générées par la protection des données sensibles, vous pouvez utiliser les outils BigQuery intégrés pour exécuter des analyses SQL approfondies ou des outils tels que Looker Studio pour générer des rapports. Pour en savoir plus, consultez Analyser des résultats liés à la protection des données sensibles et créer des rapports les concernant. Pour consulter des exemples de requêtes, reportez-vous à la page Interroger les résultats Cloud DLP dans BigQuery.

L'envoi d'une requête d'inspection du dépôt de stockage à la protection des données sensibles entraîne la création et l'exécution d'une instance d'objet DlpJob en réponse. Ces tâches peuvent prendre quelques secondes, minutes ou heures en fonction du volume de données concerné par l'analyse et de la configuration que vous avez spécifiée. Si vous optez pour la publication dans un sujet Cloud Pub/Sub (en spécifiant PublishToPubSub dans un objet Action), des notifications sont envoyées automatiquement au sujet spécifié lorsque l'état de la tâche change. Le nom du sujet Pub/Sub est spécifié au format projects/[PROJECT-ID]/topics/[PUBSUB-TOPIC-NAME].

Vous bénéficiez d'un contrôle total sur les tâches que vous créez, y compris en ce qui concerne les méthodes de gestion suivantes :

  • Méthode projects.dlpJobs.cancel : arrête une tâche en cours. Le serveur fait de son mieux pour annuler la tâche, mais la réussite de l'opération n'est pas garantie. La tâche et sa configuration seront conservées jusqu'à ce que vous les supprimiez.
  • Méthode projects.dlpJobs.delete : supprime une tâche et sa configuration.
  • Méthode projects.dlpJobs.get : récupère une seule tâche et renvoie son état, sa configuration et, si la tâche est terminée, un résumé des résultats.
  • Méthode projects.dlpJobs.list : récupère la liste de toutes les tâches et inclut la possibilité de filtrer les résultats.

Étapes suivantes