Memeriksa data sensitif di penyimpanan dan database Google Cloud

Pengelolaan data sensitif yang disimpan dalam repositori penyimpanan dengan benar dimulai dengan klasifikasi penyimpanan: mengidentifikasi lokasi data sensitif Anda dalam repositori, jenis data sensitif yang disimpan, dan penggunaannya. Pengetahuan ini dapat membantu Anda menetapkan kontrol akses dan izin berbagi dengan benar, dan dapat menjadi bagian dari rencana pemantauan yang berkelanjutan.

Perlindungan Data Sensitif dapat mendeteksi dan mengklasifikasikan data sensitif yang disimpan di lokasi Cloud Storage, jenis Datastore, atau tabel BigQuery. Saat memindai file di lokasi Cloud Storage, Perlindungan Data Sensitif mendukung pemindaian file biner, teks, gambar, Microsoft Word, Microsoft Excel, Microsoft Powerpoint, PDF, dan Apache Avro. File dengan jenis yang tidak dikenal dipindai sebagai file biner. Untuk informasi selengkapnya tentang jenis file yang didukung, lihat Jenis file yang didukung.

Untuk memeriksa penyimpanan dan database untuk data sensitif, Anda harus menentukan lokasi data dan jenis data sensitif yang harus dicari oleh Perlindungan Data Sensitif. Perlindungan Data Sensitif memulai tugas yang memeriksa data di lokasi tertentu, lalu menyediakan detail tentang infoTypes yang ditemukan dalam konten, nilai kemungkinan, dan lainnya.

Anda dapat menyiapkan pemeriksaan penyimpanan dan database menggunakan Perlindungan Data Sensitif di Konsol Google Cloud, melalui RESTful DLP API, atau secara terprogram menggunakan library klien Perlindungan Data Sensitif dalam salah satu dari beberapa bahasa.

Topik ini mencakup:

  • Praktik terbaik untuk menyiapkan pemindaian repositori dan database Google Cloud.
  • Petunjuk untuk menyiapkan pemindaian inspeksi menggunakan Perlindungan Data Sensitif di Google Cloud Console, dan (opsional) untuk menjadwalkan pemindaian pemeriksaan berulang secara berkala.
  • JSON dan contoh kode untuk setiap jenis repositori penyimpanan Google Cloud: (Cloud Storage, Firestore dalam mode Datastore (Datastore), dan BigQuery).
  • Ringkasan mendetail tentang opsi konfigurasi untuk tugas pemindaian.
  • Petunjuk tentang cara mengambil hasil pemindaian dan cara mengelola tugas pemindaian yang dibuat dari setiap permintaan yang berhasil.

Praktik terbaik

Mengidentifikasi dan memprioritaskan pemindaian

Penting untuk mengevaluasi aset Anda terlebih dahulu dan menentukan aset mana yang memiliki prioritas tertinggi untuk pemindaian. Saat memulai, Anda mungkin memiliki backlog data besar yang memerlukan klasifikasi, dan tidak mungkin untuk langsung memindai semuanya. Pilih data yang pada awalnya memiliki potensi risiko tertinggi—misalnya, data yang sering diakses, dapat diakses secara luas, atau tidak diketahui.

Pastikan Perlindungan Data Sensitif dapat mengakses data Anda

Perlindungan Data Sensitif harus dapat mengakses data yang akan dipindai. Pastikan akun layanan Perlindungan Data Sensitif diizinkan untuk membaca resource Anda.

Membatasi cakupan pemindaian pertama

Untuk hasil terbaik, batasi cakupan tugas pertama, bukan memindai semua data Anda. Mulailah dengan satu tabel, satu bucket, atau beberapa file, dan gunakan pengambilan sampel. Dengan membatasi cakupan pemindaian pertama, Anda dapat menentukan detektor yang akan diaktifkan dan aturan pengecualian yang mungkin diperlukan untuk mengurangi positif palsu (PP) sehingga temuan Anda menjadi lebih bermakna. Jangan mengaktifkan semua infoTypes jika Anda tidak memerlukannya, karena positif palsu atau temuan yang tidak dapat digunakan dapat mempersulit penilaian risiko Anda. Meskipun berguna dalam skenario tertentu, infoType seperti DATE, TIME, DOMAIN_NAME, dan URL cocok dengan berbagai temuan dan mungkin tidak berguna untuk diaktifkan untuk pemindaian data berukuran besar.

Saat mengambil sampel file terstruktur—seperti file CSV, TSV, atau Avro—pastikan ukuran sampel cukup besar untuk menutupi header penuh file dan baris data. Untuk informasi selengkapnya, lihat Memindai file terstruktur dalam mode penguraian terstruktur.

Menjadwalkan pemindaian

Gunakan pemicu tugas Perlindungan Data Sensitif untuk otomatis menjalankan pemindaian dan membuat temuan setiap hari, setiap minggu, atau setiap tiga bulan. Pemindaian ini juga dapat dikonfigurasi untuk hanya memeriksa data yang telah berubah sejak pemindaian terakhir, sehingga dapat menghemat waktu dan mengurangi biaya. Menjalankan pemindaian secara reguler dapat membantu Anda mengidentifikasi tren atau anomali dalam hasil pemindaian.

Latensi tugas

Tidak ada tujuan tingkat layanan (SLO) yang dijamin untuk tugas dan pemicu tugas. Latensi dipengaruhi oleh beberapa faktor, termasuk jumlah data yang akan dipindai, repositori penyimpanan yang dipindai, jenis dan jumlah infoType yang Anda pindai, region tempat tugas diproses, dan resource komputasi yang tersedia di region tersebut. Oleh karena itu, latensi tugas pemeriksaan tidak dapat ditentukan di awal.

Untuk membantu mengurangi latensi tugas, Anda dapat mencoba hal berikut:

  • Jika pengambilan sampel tersedia untuk tugas atau pemicu tugas Anda, aktifkan.
  • Hindari mengaktifkan infoType yang tidak Anda perlukan. Meskipun hal berikut berguna dalam skenario tertentu, infoType ini dapat membuat permintaan berjalan jauh lebih lambat daripada permintaan yang tidak menyertakannya:

    • PERSON_NAME
    • FEMALE_NAME
    • MALE_NAME
    • FIRST_NAME
    • LAST_NAME
    • DATE_OF_BIRTH
    • LOCATION
    • STREET_ADDRESS
    • ORGANIZATION_NAME
  • Selalu tentukan infoTypes secara eksplisit. Jangan gunakan daftar infoTypes kosong.

  • Jika memungkinkan, gunakan region pemrosesan yang berbeda.

Jika Anda masih mengalami masalah latensi dengan tugas setelah mencoba teknik ini, pertimbangkan untuk menggunakan permintaan content.inspect atau content.deidentify, bukan tugas. Metode ini tercakup dalam Perjanjian Tingkat Layanan. Untuk informasi selengkapnya, lihat Perjanjian Tingkat Layanan Perlindungan Data Sensitif.

Sebelum memulai

Petunjuk yang diberikan dalam topik ini mengasumsikan hal berikut:

Klasifikasi penyimpanan memerlukan cakupan OAuth berikut: https://www.googleapis.com/auth/cloud-platform. Untuk mengetahui informasi selengkapnya, lihat bagian Mengautentikasi ke DLP API.

Memeriksa lokasi Cloud Storage

Anda dapat menyiapkan pemeriksaan Perlindungan Data Sensitif untuk lokasi Cloud Storage menggunakan Konsol Google Cloud, DLP API melalui permintaan REST atau RPC, atau secara terprogram dalam beberapa bahasa menggunakan library klien. Untuk informasi tentang parameter yang disertakan dengan JSON dan contoh kode berikut, lihat "Mengonfigurasi pemeriksaan penyimpanan", nanti dalam topik ini.

Perlindungan Data Sensitif mengandalkan ekstensi file dan jenis media (MIME) untuk mengidentifikasi jenis file yang akan dipindai dan mode pemindaian yang akan diterapkan. Misalnya, Perlindungan Data Sensitif memindai file .txt dalam mode teks biasa, meskipun file tersebut terstruktur sebagai file CSV, yang biasanya dipindai dalam mode penguraian terstruktur.

Untuk menyiapkan tugas pemindaian bucket Cloud Storage menggunakan Perlindungan Data Sensitif:

Konsol

Bagian ini menjelaskan cara memeriksa bucket atau folder Cloud Storage. Jika Anda juga ingin Perlindungan Data Sensitif membuat salinan data yang tidak teridentifikasi, lihat Melakukan de-identifikasi data sensitif yang tersimpan di Cloud Storage menggunakan Konsol Google Cloud.

  1. Di bagian Perlindungan Data Sensitif pada Konsol Google Cloud, buka halaman Buat tugas atau pemicu tugas.

    Buka Buat tugas atau pemicu tugas

  2. Masukkan informasi tugas Perlindungan Data Sensitif dan klik Lanjutkan untuk menyelesaikan setiap langkah:

    • Untuk Langkah 1: Pilih data input, beri nama tugas dengan memasukkan nilai di kolom Name. Di Lokasi, pilih Cloud Storage dari menu Jenis penyimpanan, lalu masukkan lokasi data yang akan dipindai. Bagian Sampling telah dikonfigurasi sebelumnya untuk menjalankan pemindaian sampel terhadap data Anda. Anda dapat menyesuaikan kolom Persentase objek yang dipindai dalam bucket untuk menghemat resource jika Anda memiliki data dalam jumlah besar. Untuk detail selengkapnya, lihat Memilih data input.

    • (Opsional) Untuk Langkah 2: Konfigurasi deteksi, Anda dapat mengonfigurasi jenis data yang akan dicari, yang disebut "infoTypes". Anda dapat memilih dari daftar infoTypes yang telah ditentukan sebelumnya, atau memilih template jika ada. Untuk mengetahui detail selengkapnya, lihat Mengonfigurasi deteksi.

    • (Opsional) Untuk Langkah 3: Tambahkan tindakan, pastikan Beri tahu melalui email diaktifkan.

      Aktifkan Simpan ke BigQuery untuk memublikasikan temuan Perlindungan Data Sensitif Anda ke tabel BigQuery. Berikan hal berikut:

      • Untuk Project ID, masukkan project ID tempat hasil disimpan.
      • Untuk ID Set Data, masukkan nama set data yang menyimpan hasil Anda.
      • (Opsional) Untuk ID Tabel, masukkan nama tabel yang menyimpan hasil Anda. Jika tidak ada ID tabel yang ditentukan, nama default akan ditetapkan ke tabel baru yang mirip dengan berikut ini: dlp_googleapis_[DATE]_1234567890, dengan [DATE] mewakili tanggal pemindaian dijalankan. Jika Anda menentukan tabel yang sudah ada, temuan akan ditambahkan ke tabel tersebut.
      • (Opsional) Aktifkan Sertakan Penawaran Harga untuk menyertakan string yang cocok dengan detektor infoType. Kutipan berpotensi sensitif, jadi secara default, Perlindungan Data Sensitif tidak menyertakannya dalam temuan.

      Ketika data ditulis ke tabel BigQuery, penagihan dan penggunaan kuota diterapkan ke project yang berisi tabel tujuan.

      Jika Anda ingin membuat salinan data yang telah dide-identifikasi, aktifkan Buat salinan yang dide-identifikasi. Untuk mengetahui informasi selengkapnya, lihat artikel Melakukan de-identifikasi data sensitif yang disimpan di Cloud Storage menggunakan Konsol Google Cloud.

      Anda juga dapat menyimpan hasil ke Pub/Sub, Security Command Center, Data Catalog, dan Cloud Monitoring. Untuk mengetahui detail selengkapnya, lihat Menambahkan tindakan.

    • (Opsional) Untuk Langkah 4: Jadwal, untuk menjalankan pemindaian satu kali saja, biarkan menu disetel ke Tidak ada. Untuk menjadwalkan pemindaian agar berjalan secara berkala, klik Create a trigger to run the job on a berkala schedule. Untuk mengetahui detail selengkapnya, lihat Jadwal.

  3. Klik Create.

  4. Setelah tugas Perlindungan Data Sensitif selesai, Anda akan dialihkan ke halaman detail pekerjaan dan diberi tahu melalui email. Anda dapat melihat hasil pemeriksaan di halaman detail tugas.

  5. (Opsional) Jika Anda memilih untuk memublikasikan temuan Perlindungan Data Sensitif ke BigQuery, pada halaman Detail tugas, klik Lihat Temuan di BigQuery untuk membuka tabel di UI web BigQuery. Selanjutnya, Anda dapat membuat kueri di tabel dan menganalisis temuan Anda. Untuk mengetahui informasi selengkapnya tentang cara membuat kueri terhadap hasil Anda di BigQuery, lihat Membuat Kueri temuan Perlindungan Data Sensitif di BigQuery.

Protocol

Berikut adalah contoh JSON yang dapat dikirim dalam permintaan POST ke endpoint REST Perlindungan Data Sensitif yang ditentukan. Contoh JSON ini menunjukkan cara menggunakan DLP API untuk memeriksa bucket Cloud Storage. Untuk mengetahui informasi tentang parameter yang disertakan dengan permintaan, lihat "Mengonfigurasi pemeriksaan penyimpanan" nanti dalam topik ini.

Anda dapat mencobanya dengan cepat di APIs Explorer pada halaman referensi untuk content.inspect:

Buka APIs Explorer

Perlu diingat bahwa permintaan yang berhasil, bahkan di APIs Explorer, akan membuat tugas pemindaian baru. Untuk mengetahui informasi tentang cara mengontrol tugas pemindaian, lihat "Mengambil hasil pemeriksaan", nanti dalam topik ini. Untuk mengetahui informasi umum tentang penggunaan JSON untuk mengirim permintaan ke DLP API, lihat panduan memulai JSON.

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://[BUCKET-NAME]/*"
        },
        "bytesLimitPerFile":"1073741824"
      },
      "timespanConfig":{
        "startTime":"2017-11-13T12:34:29.965633345Z",
        "endTime":"2018-01-05T04:45:04.240912125Z"
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "excludeInfoTypes":false,
      "includeQuote":true,
      "minLikelihood":"LIKELY"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"[DATASET-ID]"
            }
          }
        }
      }
    ]
  }
}

Output JSON:

{
  "name":"projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type":"INSPECT_JOB",
  "state":"PENDING",
  "inspectDetails":{
    "requestedOptions":{
      "snapshotInspectTemplate":{

      },
      "jobConfig":{
        "storageConfig":{
          "cloudStorageOptions":{
            "fileSet":{
              "url":"gs://[BUCKET-NAME]/*"
            },
            "bytesLimitPerFile":"1073741824"
          },
          "timespanConfig":{
            "startTime":"2017-11-13T12:34:29.965633345Z",
            "endTime":"2018-01-05T04:45:04.240912125Z"
          }
        },
        "inspectConfig":{
          "infoTypes":[
            {
              "name":"PHONE_NUMBER"
            }
          ],
          "minLikelihood":"LIKELY",
          "limits":{

          },
          "includeQuote":true
        },
        "actions":[
          {
            "saveFindings":{
              "outputConfig":{
                "table":{
                  "projectId":"[PROJECT-ID]",
                  "datasetId":"[DATASET-ID]",
                  "tableId":"[NEW-TABLE-ID]"
                }
              }
            }
          }
        ]
      }
    }
  },
  "createTime":"2018-11-07T18:01:14.225Z"
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CloudStorageOptions.FileSet;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectGcsFile {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsUri = "gs://" + "your-bucket-name" + "/path/to/your/file.txt";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectGcsFile(projectId, gcsUri, topicId, subscriptionId);
  }

  // Inspects a file in a Google Cloud Storage Bucket.
  public static void inspectGcsFile(
      String projectId, String gcsUri, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the GCS file to be inspected.
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder().setFileSet(FileSet.newBuilder().setUrl(gcsUri)).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setCloudStorageOptions(cloudStorageOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addAllInfoTypes(infoTypes).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The name of the bucket where the file resides.
// const bucketName = 'YOUR-BUCKET';

// The path to the file within the bucket to inspect.
// Can contain wildcards, e.g. "my-image.*"
// const fileName = 'my-image.png';

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The customInfoTypes of information to match
// const customInfoTypes = [{ infoType: { name: 'DICT_TYPE' }, dictionary: { wordList: { words: ['foo', 'bar', 'baz']}}},
//   { infoType: { name: 'REGEX_TYPE' }, regex: {pattern: '\\(\\d{3}\\) \\d{3}-\\d{4}'}}];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

async function inspectGCSFile() {
  // Get reference to the file to be inspected
  const storageItem = {
    cloudStorageOptions: {
      fileSet: {url: `gs://${bucketName}/${fileName}`},
    },
  };

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        customInfoTypes: customInfoTypes,
        minLikelihood: minLikelihood,
        limits: {
          maxFindingsPerRequest: maxFindings,
        },
      },
      storageConfig: storageItem,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Create a GCS File inspection job and wait for it to complete
  const [topicResponse] = await pubsub.topic(topicId).get();
  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  // Get the job's ID
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });

  setTimeout(() => {
    console.log('Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectGCSFile();

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading
from typing import List, Optional

import google.cloud.dlp
import google.cloud.pubsub

def inspect_gcs_file(
    project: str,
    bucket: str,
    filename: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    min_likelihood: Optional[str] = None,
    max_findings: Optional[int] = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze a file on GCS.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket containing the file, as a string.
        filename: The name of the file in the bucket, including the path, as a
            string; e.g. 'images/myfile.png'.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a storage_config containing the file's URL.
    url = f"gs://{bucket}/{filename}"
    storage_config = {"cloud_storage_options": {"file_set": {"url": url}}}

    # Convert the project id into full resource ids.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectGCSFile searches for the given info types in the given file.
func inspectGCSFile(w io.Writer, projectID string, infoTypeNames []string, customDictionaries []string, customRegexes []string, pubSubTopic, pubSubSub, bucketName, fileName string) error {
	// projectID := "my-project-id"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}
	// customDictionaries := []string{...}
	// customRegexes := []string{...}
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// bucketName := "my-bucket"
	// fileName := "my-file.txt"

	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}
	// Convert the custom dictionary word lists and custom regexes to a list of CustomInfoTypes.
	var customInfoTypes []*dlppb.CustomInfoType
	for idx, it := range customDictionaries {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_DICTIONARY_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Dictionary_{
				Dictionary: &dlppb.CustomInfoType_Dictionary{
					Source: &dlppb.CustomInfoType_Dictionary_WordList_{
						WordList: &dlppb.CustomInfoType_Dictionary_WordList{
							Words: strings.Split(it, ","),
						},
					},
				},
			},
		})
	}
	for idx, it := range customRegexes {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_REGEX_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Regex_{
				Regex: &dlppb.CustomInfoType_Regex{
					Pattern: it,
				},
			},
		})
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("pubsub.NewClient: %w", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	if exists, err := t.Exists(ctx); err != nil {
		return fmt.Errorf("t.Exists: %w", err)
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	if exists, err := s.Exists(ctx); err != nil {
		return fmt.Errorf("s.Exists: %w", err)
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return fmt.Errorf("CreateSubscription: %w", err)
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				// StorageConfig describes where to find the data.
				StorageConfig: &dlppb.StorageConfig{
					Type: &dlppb.StorageConfig_CloudStorageOptions{
						CloudStorageOptions: &dlppb.CloudStorageOptions{
							FileSet: &dlppb.CloudStorageOptions_FileSet{
								Url: "gs://" + bucketName + "/" + fileName,
							},
						},
					},
				},
				// InspectConfig describes what fields to look for.
				InspectConfig: &dlppb.InspectConfig{
					InfoTypes:       infoTypes,
					CustomInfoTypes: customInfoTypes,
					MinLikelihood:   dlppb.Likelihood_POSSIBLE,
					Limits: &dlppb.InspectConfig_FindingLimits{
						MaxFindingsPerRequest: 10,
					},
					IncludeQuote: true,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the inspect job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Cloud not get job: %v", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
		}
		for _, s := range r {
			fmt.Fprintf(w, "  Found %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect a file stored on Google Cloud Storage , using Pub/Sub for job status notifications.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string $bucketId          The name of the bucket where the file resides
 * @param string $file              The path to the file within the bucket to inspect. Can contain wildcards e.g. "my-image.*"
 * @param int    $maxFindings       (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function inspect_gcs(
    string $callingProjectId,
    string $topicId,
    string $subscriptionId,
    string $bucketId,
    string $file,
    int $maxFindings = 0
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $creditCardNumberInfoType = (new InfoType())
        ->setName('CREDIT_CARD_NUMBER');
    $infoTypes = [$personNameInfoType, $creditCardNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Construct items to be inspected
    $fileSet = (new FileSet())
        ->setUrl('gs://' . $bucketId . '/' . $file);

    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet($fileSet);

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions($cloudStorageOptions);

    // Construct the inspect config object
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct inspect job config to run
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                print('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf('  Found %s instance(s) of infoType %s' . PHP_EOL, $infoTypeStat->getCount(), $infoTypeStat->getInfoType()->getName());
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectGoogleCloudStorage
{
    public static DlpJob InspectGCS(
        string projectId,
        Likelihood minLikelihood,
        int maxFindings,
        bool includeQuote,
        IEnumerable<InfoType> infoTypes,
        IEnumerable<CustomInfoType> customInfoTypes,
        string bucketName,
        string topicId,
        string subscriptionId)
    {
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = new StorageConfig
            {
                CloudStorageOptions = new CloudStorageOptions
                {
                    FileSet = new CloudStorageOptions.Types.FileSet { Url = $"gs://{bucketName}/*.txt" },
                    BytesLimitPerFile = 1073741824
                },
            },
            InspectConfig = new InspectConfig
            {
                InfoTypes = { infoTypes },
                CustomInfoTypes = { customInfoTypes },
                ExcludeInfoTypes = false,
                IncludeQuote = includeQuote,
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                MinLikelihood = minLikelihood
            },
            Actions =
                {
                    new Google.Cloud.Dlp.V2.Action
                    {
                        // Send results to Pub/Sub topic
                        PubSub = new Google.Cloud.Dlp.V2.Action.Types.PublishToPubSub
                        {
                            Topic = topicId,
                        }
                    }
                }
        };

        // Issue Create Dlp Job Request
        var client = DlpServiceClient.Create();
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            Parent = new LocationName(projectId, "global").ToString(),
        };

        // We need created job name
        var dlpJob = client.CreateDlpJob(request);

        // Get a pub/sub subscription and listen for DLP results
        var fireEvent = new ManualResetEventSlim();

        var subscriptionName = new SubscriptionName(projectId, subscriptionId);
        var subscriber = SubscriberClient.CreateAsync(subscriptionName).Result;
        subscriber.StartAsync(
            (pubSubMessage, cancellationToken) =>
            {
                // Given a message that we receive on this subscription, we should either acknowledge or decline it
                if (pubSubMessage.Attributes["DlpJobName"] == dlpJob.Name)
                {
                    fireEvent.Set();
                    return Task.FromResult(SubscriberClient.Reply.Ack);
                }

                return Task.FromResult(SubscriberClient.Reply.Nack);
            });

        // We block here until receiving a signal from a separate thread that is waiting on a message indicating receiving a result of Dlp job
        if (fireEvent.Wait(TimeSpan.FromMinutes(1)))
        {
            // Stop the thread that is listening to messages as a result of StartAsync call earlier
            subscriber.StopAsync(CancellationToken.None).Wait();

            // Now we can inspect full job results
            var job = client.GetDlpJob(new GetDlpJobRequest { DlpJobName = new DlpJobName(projectId, dlpJob.Name) });

            // Inspect Job details
            Console.WriteLine($"Processed bytes: {job.InspectDetails.Result.ProcessedBytes}");
            Console.WriteLine($"Total estimated bytes: {job.InspectDetails.Result.TotalEstimatedBytes}");
            var stats = job.InspectDetails.Result.InfoTypeStats;
            Console.WriteLine("Found stats:");
            foreach (var stat in stats)
            {
                Console.WriteLine($"{stat.InfoType.Name}");
            }

            return job;
        }

        throw new InvalidOperationException("The wait failed on timeout");
    }
}

Memeriksa jenis Datastore

Anda dapat menyiapkan pemeriksaan jenis Datastore menggunakan konsol Google Cloud, DLP API melalui permintaan REST atau RPC, atau secara terprogram dalam beberapa bahasa menggunakan library klien.

Untuk menyiapkan tugas pemindaian jenis Datastore menggunakan Perlindungan Data Sensitif:

Konsol

Untuk menyiapkan tugas pemindaian jenis Datastore menggunakan Perlindungan Data Sensitif:

  1. Di bagian Perlindungan Data Sensitif pada Konsol Google Cloud, buka halaman Buat tugas atau pemicu tugas.

    Buka Buat tugas atau pemicu tugas

  2. Masukkan informasi tugas Perlindungan Data Sensitif dan klik Lanjutkan untuk menyelesaikan setiap langkah:

    • Untuk Langkah 1: Pilih data input, masukkan ID untuk project, namespace (opsional), dan jenis yang ingin dipindai. Untuk detail selengkapnya, lihat Memilih data input.

    • (Opsional) Untuk Langkah 2: Konfigurasi deteksi, Anda dapat mengonfigurasi jenis data yang akan dicari, yang disebut "infoTypes". Anda dapat memilih dari daftar infoTypes yang telah ditentukan sebelumnya, atau memilih template jika ada. Untuk mengetahui detail selengkapnya, lihat Mengonfigurasi deteksi.

    • (Opsional) Untuk Langkah 3: Tambahkan tindakan, pastikan Beri tahu melalui email diaktifkan.

      Aktifkan Simpan ke BigQuery untuk memublikasikan temuan Perlindungan Data Sensitif Anda ke tabel BigQuery. Berikan hal berikut:

      • Untuk Project ID, masukkan project ID tempat hasil disimpan.
      • Untuk ID Set Data, masukkan nama set data yang menyimpan hasil Anda.
      • (Opsional) Untuk ID Tabel, masukkan nama tabel yang menyimpan hasil Anda. Jika tidak ada ID tabel yang ditentukan, nama default akan diberikan ke tabel baru yang mirip dengan tabel berikut: dlp_googleapis_[DATE]_1234567890. Jika Anda menentukan tabel yang sudah ada, temuan akan ditambahkan ke tabel tersebut.

      Ketika data ditulis ke tabel BigQuery, penagihan dan penggunaan kuota diterapkan ke project yang berisi tabel tujuan.

      Untuk mengetahui informasi selengkapnya tentang tindakan lain yang tercantum, lihat Menambahkan tindakan.

    • (Opsional) Untuk Langkah 4: Jadwalkan, konfigurasikan rentang waktu atau jadwal dengan memilih Tentukan rentang waktu atau Buat pemicu untuk menjalankan tugas pada jadwal berkala. Untuk informasi selengkapnya, lihat Jadwal.

  3. Klik Create.

  4. Setelah tugas Perlindungan Data Sensitif selesai, Anda akan dialihkan ke halaman detail lowongan dan diberi tahu melalui email. Anda dapat melihat hasil pemeriksaan di halaman detail tugas.

  5. (Opsional) Jika Anda memilih untuk memublikasikan temuan Perlindungan Data Sensitif ke BigQuery, pada halaman Detail tugas, klik Lihat Temuan di BigQuery untuk membuka tabel di UI web BigQuery. Selanjutnya, Anda dapat membuat kueri tabel dan menganalisis temuan Anda. Untuk mengetahui informasi selengkapnya tentang cara mengkueri hasil di BigQuery, lihat Membuat Kueri temuan Perlindungan Data Sensitif di BigQuery.

Protocol

Berikut adalah contoh JSON yang dapat dikirim dalam permintaan POST ke endpoint REST DLP API yang ditentukan. Contoh JSON ini menunjukkan cara menggunakan DLP API untuk memeriksa jenis Datastore. Untuk mengetahui informasi tentang parameter yang disertakan dengan permintaan, lihat "Mengonfigurasi pemeriksaan penyimpanan", nanti dalam topik ini.

Anda dapat mencobanya dengan cepat di APIs Explorer pada halaman referensi untuk dlpJobs.create:

Buka APIs Explorer

Perlu diingat bahwa permintaan yang berhasil, bahkan di APIs Explorer, akan membuat tugas pemindaian baru. Untuk mengetahui informasi tentang cara mengontrol tugas pemindaian, lihat Mengambil hasil pemeriksaan, yang akan dibahas nanti dalam topik ini. Untuk mengetahui informasi umum tentang penggunaan JSON untuk mengirim permintaan ke DLP API, lihat panduan memulai JSON.

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "datastoreOptions":{
        "kind":{
          "name":"Example-Kind"
        },
        "partitionId":{
          "namespaceId":"[NAMESPACE-ID]",
          "projectId":"[PROJECT-ID]"
        }
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "excludeInfoTypes":false,
      "includeQuote":true,
      "minLikelihood":"LIKELY"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"[BIGQUERY-DATASET-NAME]",
              "tableId":"[BIGQUERY-TABLE-NAME]"
            }
          }
        }
      }
    ]
  }
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DatastoreOptions;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.KindExpression;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PartitionId;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectDatastoreEntity {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String datastoreNamespace = "your-datastore-namespace";
    String datastoreKind = "your-datastore-kind";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    insepctDatastoreEntity(projectId, datastoreNamespace, datastoreKind, topicId, subscriptionId);
  }

  // Inspects a Datastore Entity.
  public static void insepctDatastoreEntity(
      String projectId,
      String datastoreNamespce,
      String datastoreKind,
      String topicId,
      String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the Datastore entity to be inspected.
      PartitionId partitionId =
          PartitionId.newBuilder()
              .setProjectId(projectId)
              .setNamespaceId(datastoreNamespce)
              .build();
      KindExpression kindExpression = KindExpression.newBuilder().setName(datastoreKind).build();

      DatastoreOptions datastoreOptions =
          DatastoreOptions.newBuilder().setKind(kindExpression).setPartitionId(partitionId).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setDatastoreOptions(datastoreOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addAllInfoTypes(infoTypes).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the target Datastore is stored under
// This may or may not equal the calling project ID
// const dataProjectId = 'my-project';

// (Optional) The ID namespace of the Datastore document to inspect.
// To ignore Datastore namespaces, set this to an empty string ('')
// const namespaceId = '';

// The kind of the Datastore entity to inspect.
// const kind = 'Person';

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The customInfoTypes of information to match
// const customInfoTypes = [{ infoType: { name: 'DICT_TYPE' }, dictionary: { wordList: { words: ['foo', 'bar', 'baz']}}},
//   { infoType: { name: 'REGEX_TYPE' }, regex: {pattern: '\\(\\d{3}\\) \\d{3}-\\d{4}'}}];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

async function inspectDatastore() {
  // Construct items to be inspected
  const storageItems = {
    datastoreOptions: {
      partitionId: {
        projectId: dataProjectId,
        namespaceId: namespaceId,
      },
      kind: {
        name: kind,
      },
    },
  };

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        customInfoTypes: customInfoTypes,
        minLikelihood: minLikelihood,
        limits: {
          maxFindingsPerRequest: maxFindings,
        },
      },
      storageConfig: storageItems,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };
  // Run inspect-job creation request
  const [topicResponse] = await pubsub.topic(topicId).get();
  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  // Wait for DLP job to fully complete
  setTimeout(() => {
    console.log('Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}
await inspectDatastore();

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading
from typing import List, Optional

import google.cloud.dlp
import google.cloud.pubsub

def inspect_datastore(
    project: str,
    datastore_project: str,
    kind: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    namespace_id: str = None,
    min_likelihood: Optional[int] = None,
    max_findings: Optional[int] = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze Datastore data.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        datastore_project: The Google Cloud project id of the target Datastore.
        kind: The kind of the Datastore entity to inspect, e.g. 'Person'.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        namespace_id: The namespace of the Datastore document, if applicable.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a storage_config containing the target Datastore info.
    storage_config = {
        "datastore_options": {
            "partition_id": {
                "project_id": datastore_project,
                "namespace_id": namespace_id,
            },
            "kind": {"name": kind},
        }
    }

    # Convert the project id into full resource ids.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)

    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectDatastore searches for the given info types in the given dataset kind.
func inspectDatastore(w io.Writer, projectID string, infoTypeNames []string, customDictionaries []string, customRegexes []string, pubSubTopic, pubSubSub, dataProject, namespaceID, kind string) error {
	// projectID := "my-project-id"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}
	// customDictionaries := []string{...}
	// customRegexes := []string{...}
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// namespaceID := "namespace-id"
	// kind := "MyKind"

	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}
	// Convert the custom dictionary word lists and custom regexes to a list of CustomInfoTypes.
	var customInfoTypes []*dlppb.CustomInfoType
	for idx, it := range customDictionaries {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_DICTIONARY_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Dictionary_{
				Dictionary: &dlppb.CustomInfoType_Dictionary{
					Source: &dlppb.CustomInfoType_Dictionary_WordList_{
						WordList: &dlppb.CustomInfoType_Dictionary_WordList{
							Words: strings.Split(it, ","),
						},
					},
				},
			},
		})
	}
	for idx, it := range customRegexes {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_REGEX_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Regex_{
				Regex: &dlppb.CustomInfoType_Regex{
					Pattern: it,
				},
			},
		})
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("pubsub.NewClient: %w", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	if exists, err := t.Exists(ctx); err != nil {
		return fmt.Errorf("t.Exists: %w", err)
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	if exists, err := s.Exists(ctx); err != nil {
		return fmt.Errorf("s.Exists: %w", err)
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return fmt.Errorf("CreateSubscription: %w", err)
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				// StorageConfig describes where to find the data.
				StorageConfig: &dlppb.StorageConfig{
					Type: &dlppb.StorageConfig_DatastoreOptions{
						DatastoreOptions: &dlppb.DatastoreOptions{
							PartitionId: &dlppb.PartitionId{
								ProjectId:   dataProject,
								NamespaceId: namespaceID,
							},
							Kind: &dlppb.KindExpression{
								Name: kind,
							},
						},
					},
				},
				// InspectConfig describes what fields to look for.
				InspectConfig: &dlppb.InspectConfig{
					InfoTypes:       infoTypes,
					CustomInfoTypes: customInfoTypes,
					MinLikelihood:   dlppb.Likelihood_POSSIBLE,
					Limits: &dlppb.InspectConfig_FindingLimits{
						MaxFindingsPerRequest: 10,
					},
					IncludeQuote: true,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the inspect job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Error getting completed job: %v\n", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
			return
		}
		for _, s := range r {
			fmt.Fprintf(w, "  Found %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DatastoreOptions;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\KindExpression;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\PartitionId;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect Datastore, using Pub/Sub for job status notifications.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $dataProjectId     The project ID containing the target Datastore
 * @param string $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string $kind              The datastore kind to inspect
 * @param string $namespaceId       The ID namespace of the Datastore document to inspect
 * @param int    $maxFindings       (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function inspect_datastore(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $kind,
    string $namespaceId,
    int $maxFindings = 0
): void {
    // Instantiate clients
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $infoTypes = [$personNameInfoType, $phoneNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Construct items to be inspected
    $partitionId = (new PartitionId())
        ->setProjectId($dataProjectId)
        ->setNamespaceId($namespaceId);

    $kindExpression = (new KindExpression())
        ->setName($kind);

    $datastoreOptions = (new DatastoreOptions())
        ->setPartitionId($partitionId)
        ->setKind($kindExpression);

    // Construct the inspect config object
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes($infoTypes)
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits);

    // Construct the storage config object
    $storageConfig = (new StorageConfig())
        ->setDatastoreOptions($datastoreOptions);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct inspect job config to run
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                print('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf('  Found %s instance(s) of infoType %s' . PHP_EOL, $infoTypeStat->getCount(), $infoTypeStat->getInfoType()->getName());
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state.');
    }
}

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.BigQuery.V2;
using Google.Cloud.Dlp.V2;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Collections.Generic;
using System.Threading;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectCloudDataStore
{
    public static object Inspect(
        string projectId,
        Likelihood minLikelihood,
        int maxFindings,
        bool includeQuote,
        string kindName,
        string namespaceId,
        IEnumerable<InfoType> infoTypes,
        IEnumerable<CustomInfoType> customInfoTypes,
        string datasetId,
        string tableId)
    {
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = new StorageConfig
            {
                DatastoreOptions = new DatastoreOptions
                {
                    Kind = new KindExpression { Name = kindName },
                    PartitionId = new PartitionId
                    {
                        NamespaceId = namespaceId,
                        ProjectId = projectId,
                    }
                },
                TimespanConfig = new StorageConfig.Types.TimespanConfig
                {
                    StartTime = Timestamp.FromDateTime(System.DateTime.UtcNow.AddYears(-1)),
                    EndTime = Timestamp.FromDateTime(System.DateTime.UtcNow)
                }
            },

            InspectConfig = new InspectConfig
            {
                InfoTypes = { infoTypes },
                CustomInfoTypes = { customInfoTypes },
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                ExcludeInfoTypes = false,
                IncludeQuote = includeQuote,
                MinLikelihood = minLikelihood
            },
            Actions =
                {
                    new Google.Cloud.Dlp.V2.Action
                    {
                        // Save results in BigQuery Table
                        SaveFindings = new Google.Cloud.Dlp.V2.Action.Types.SaveFindings
                        {
                            OutputConfig = new OutputStorageConfig
                            {
                                Table = new Google.Cloud.Dlp.V2.BigQueryTable
                                {
                                    ProjectId = projectId,
                                    DatasetId = datasetId,
                                    TableId = tableId
                                }
                            }
                        },
                    }
                }
        };

        // Issue Create Dlp Job Request
        var client = DlpServiceClient.Create();
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            Parent = new LocationName(projectId, "global").ToString(),
        };

        // We need created job name
        var dlpJob = client.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Make sure the job finishes before inspecting the results.
        // Alternatively, we can inspect results opportunistically, but
        // for testing purposes, we want consistent outcome
        var finishedJob = EnsureJobFinishes(projectId, jobName);
        var bigQueryClient = BigQueryClient.Create(projectId);
        var table = bigQueryClient.GetTable(datasetId, tableId);

        // Return only first page of 10 rows
        Console.WriteLine("DLP v2 Results:");
        var firstPage = table.ListRows(new ListRowsOptions { StartIndex = 0, PageSize = 10 });
        foreach (var item in firstPage)
        {
            Console.WriteLine($"\t {item[""]}");
        }

        return finishedJob;
    }

    private static DlpJob EnsureJobFinishes(string projectId, string jobName)
    {
        var client = DlpServiceClient.Create();
        var request = new GetDlpJobRequest
        {
            DlpJobName = new DlpJobName(projectId, jobName),
        };

        // Simple logic that gives the job 5*30 sec at most to complete - for testing purposes only
        var numOfAttempts = 5;
        do
        {
            var dlpJob = client.GetDlpJob(request);
            numOfAttempts--;
            if (dlpJob.State != DlpJob.Types.JobState.Running)
            {
                return dlpJob;
            }

            Thread.Sleep(TimeSpan.FromSeconds(30));
        } while (numOfAttempts > 0);

        throw new InvalidOperationException("Job did not complete in time");
    }
}

Memeriksa tabel BigQuery

Anda dapat menyiapkan pemeriksaan tabel BigQuery menggunakan Perlindungan Data Sensitif melalui permintaan REST, atau secara terprogram dalam beberapa bahasa menggunakan library klien.

Untuk menyiapkan tugas pemindaian tabel BigQuery menggunakan Perlindungan Data Sensitif:

Konsol

Untuk menyiapkan tugas pemindaian tabel BigQuery menggunakan Perlindungan Data Sensitif:

  1. Di bagian Perlindungan Data Sensitif pada Konsol Google Cloud, buka halaman Buat tugas atau pemicu tugas.

    Buka Buat tugas atau pemicu tugas

  2. Masukkan informasi tugas Perlindungan Data Sensitif dan klik Lanjutkan untuk menyelesaikan setiap langkah:

    • Untuk Langkah 1: Pilih data input, beri nama tugas dengan memasukkan nilai di kolom Name. Di Lokasi, pilih BigQuery dari menu Jenis penyimpanan, lalu masukkan informasi untuk tabel yang akan dipindai.

      Bagian Sampling telah dikonfigurasi sebelumnya untuk menjalankan pemindaian sampel terhadap data Anda. Anda dapat menyesuaikan kolom Batasi baris menurut dan Jumlah maksimum baris untuk menghemat resource jika Anda memiliki data dalam jumlah besar. Untuk detail selengkapnya, lihat Memilih data input.

    • (Opsional) Jika Anda ingin dapat menautkan setiap temuan ke baris yang berisinya, tetapkan kolom Identifying fields.

      Masukkan nama kolom yang mengidentifikasi setiap baris secara unik dalam tabel. Jika perlu, gunakan notasi titik untuk menentukan kolom bertingkat. Anda dapat menambahkan kolom sebanyak yang Anda inginkan.

      Anda juga harus mengaktifkan tindakan Simpan ke BigQuery untuk mengekspor temuannya ke BigQuery. Saat temuan diekspor ke BigQuery, setiap temuan berisi nilai masing-masing kolom pengidentifikasi. Untuk informasi selengkapnya, lihat identifyingFields.

    • (Opsional) Untuk Langkah 2: Konfigurasi deteksi, Anda dapat mengonfigurasi jenis data yang akan dicari, yang disebut "infoTypes". Anda dapat memilih dari daftar infoTypes yang telah ditentukan sebelumnya, atau memilih template jika ada. Untuk mengetahui detail selengkapnya, lihat Mengonfigurasi deteksi.

    • (Opsional) Untuk Langkah 3: Tambahkan tindakan, pastikan Beri tahu melalui email diaktifkan.

      Aktifkan Simpan ke BigQuery untuk memublikasikan temuan Perlindungan Data Sensitif Anda ke tabel BigQuery. Berikan hal berikut:

      • Untuk Project ID, masukkan project ID tempat hasil disimpan.
      • Untuk ID Set Data, masukkan nama set data yang menyimpan hasil Anda.
      • (Opsional) Untuk ID Tabel, masukkan nama tabel yang menyimpan hasil Anda. Jika tidak ada ID tabel yang ditentukan, nama default akan diberikan ke tabel baru yang mirip dengan tabel berikut: dlp_googleapis_[DATE]_1234567890. Jika Anda menentukan tabel yang sudah ada, temuan akan ditambahkan ke tabel tersebut.

      Ketika data ditulis ke tabel BigQuery, penagihan dan penggunaan kuota diterapkan ke project yang berisi tabel tujuan.

      Anda juga dapat menyimpan hasil ke Pub/Sub, Security Command Center, dan Data Catalog. Untuk detail selengkapnya, lihat Menambahkan tindakan.

    • (Opsional) Untuk Langkah 4: Jadwal, untuk menjalankan pemindaian satu kali saja, biarkan menu disetel ke Tidak ada. Untuk menjadwalkan pemindaian agar berjalan secara berkala, klik Create a trigger to run the job on a berkala schedule. Untuk mengetahui detail selengkapnya, lihat Jadwal.

  3. Klik Create.

  4. Setelah tugas Perlindungan Data Sensitif selesai, Anda akan dialihkan ke halaman detail lowongan dan diberi tahu melalui email. Anda dapat melihat hasil pemeriksaan di halaman detail tugas.

  5. (Opsional) Jika Anda memilih untuk memublikasikan temuan Perlindungan Data Sensitif ke BigQuery, pada halaman Detail tugas, klik Lihat Temuan di BigQuery untuk membuka tabel di UI web BigQuery. Selanjutnya, Anda dapat membuat kueri tabel dan menganalisis temuan Anda. Untuk mengetahui informasi selengkapnya tentang cara mengkueri hasil di BigQuery, lihat Membuat Kueri temuan Perlindungan Data Sensitif di BigQuery.

Protocol

Berikut adalah contoh JSON yang dapat dikirim dalam permintaan POST ke endpoint REST DLP API yang ditentukan. Contoh JSON ini menunjukkan cara menggunakan DLP API untuk memeriksa tabel BigQuery. Untuk mengetahui informasi tentang parameter yang disertakan dengan permintaan, lihat "Mengonfigurasi pemeriksaan penyimpanan", nanti dalam topik ini.

Anda dapat mencobanya dengan cepat di APIs Explorer pada halaman referensi untuk dlpJobs.create:

Buka APIs Explorer

Perlu diingat bahwa permintaan yang berhasil, bahkan di APIs Explorer, akan membuat tugas pemindaian baru. Untuk mengetahui informasi tentang cara mengontrol tugas pemindaian, lihat "Mengambil hasil pemeriksaan", nanti dalam topik ini. Untuk mengetahui informasi umum tentang penggunaan JSON untuk mengirim permintaan ke DLP API, lihat panduan memulai JSON.

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "bigQueryOptions":{
        "tableReference":{
          "projectId":"[PROJECT-ID]",
          "datasetId":"[BIGQUERY-DATASET-NAME]",
          "tableId":"[BIGQUERY-TABLE-NAME]"
        },
        "identifyingFields":[
          {
            "name":"id"
          }
        ]
      },
      "timespanConfig":{
        "startTime":"2017-11-13T12:34:29.965633345Z ",
        "endTime":"2018-01-05T04:45:04.240912125Z "
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PHONE_NUMBER"
        }
      ],
      "excludeInfoTypes":false,
      "includeQuote":true,
      "minLikelihood":"LIKELY"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"[BIGQUERY-DATASET-NAME]",
              "tableId":"[BIGQUERY-TABLE-NAME]"
            },
            "outputSchema": "BASIC_COLUMNS"
          }
        }
      }
    ]
  }
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.BigQueryOptions;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class InspectBigQueryTable {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String bigQueryDatasetId = "your-bigquery-dataset-id";
    String bigQueryTableId = "your-bigquery-table-id";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectBigQueryTable(projectId, bigQueryDatasetId, bigQueryTableId, topicId, subscriptionId);
  }

  // Inspects a BigQuery Table
  public static void inspectBigQueryTable(
      String projectId,
      String bigQueryDatasetId,
      String bigQueryTableId,
      String topicId,
      String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the BigQuery table to be inspected.
      BigQueryTable tableReference =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(bigQueryDatasetId)
              .setTableId(bigQueryTableId)
              .build();

      BigQueryOptions bigQueryOptions =
          BigQueryOptions.newBuilder().setTableReference(tableReference).build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setBigQueryOptions(bigQueryOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      List<InfoType> infoTypes =
          Stream.of("PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD_NUMBER")
              .map(it -> InfoType.newBuilder().setName(it).build())
              .collect(Collectors.toList());

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addAllInfoTypes(infoTypes).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const dataProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The minimum likelihood required before returning a match
// const minLikelihood = 'LIKELIHOOD_UNSPECIFIED';

// The maximum number of findings to report per request (0 = server maximum)
// const maxFindings = 0;

// The infoTypes of information to match
// const infoTypes = [{ name: 'PHONE_NUMBER' }, { name: 'EMAIL_ADDRESS' }, { name: 'CREDIT_CARD_NUMBER' }];

// The customInfoTypes of information to match
// const customInfoTypes = [{ infoType: { name: 'DICT_TYPE' }, dictionary: { wordList: { words: ['foo', 'bar', 'baz']}}},
//   { infoType: { name: 'REGEX_TYPE' }, regex: {pattern: '\\(\\d{3}\\) \\d{3}-\\d{4}'}}];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

async function inspectBigquery() {
  // Construct item to be inspected
  const storageItem = {
    bigQueryOptions: {
      tableReference: {
        projectId: dataProjectId,
        datasetId: datasetId,
        tableId: tableId,
      },
    },
  };

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        customInfoTypes: customInfoTypes,
        minLikelihood: minLikelihood,
        limits: {
          maxFindingsPerRequest: maxFindings,
        },
      },
      storageConfig: storageItem,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Run inspect-job creation request
  const [topicResponse] = await pubsub.topic(topicId).get();
  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  // Wait for DLP job to fully complete
  setTimeout(() => {
    console.log('Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}

await inspectBigquery();

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading
from typing import List, Optional

import google.cloud.dlp
import google.cloud.pubsub

def inspect_bigquery(
    project: str,
    bigquery_project: str,
    dataset_id: str,
    table_id: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str],
    custom_dictionaries: List[str] = None,
    custom_regexes: List[str] = None,
    min_likelihood: Optional[int] = None,
    max_findings: Optional[int] = None,
    timeout: int = 500,
) -> None:
    """Uses the Data Loss Prevention API to analyze BigQuery data.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bigquery_project: The Google Cloud project id of the target table.
        dataset_id: The id of the target BigQuery dataset.
        table_id: The id of the target BigQuery table.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing info types to look for.
            A full list of info type categories can be fetched from the API.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries (protos are also accepted).
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Prepare custom_info_types by parsing the dictionary word lists and
    # regex patterns.
    if custom_dictionaries is None:
        custom_dictionaries = []
    dictionaries = [
        {
            "info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
            "dictionary": {"word_list": {"words": custom_dict.split(",")}},
        }
        for i, custom_dict in enumerate(custom_dictionaries)
    ]
    if custom_regexes is None:
        custom_regexes = []
    regexes = [
        {
            "info_type": {"name": f"CUSTOM_REGEX_{i}"},
            "regex": {"pattern": custom_regex},
        }
        for i, custom_regex in enumerate(custom_regexes)
    ]
    custom_info_types = dictionaries + regexes

    # Construct the configuration dictionary. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "custom_info_types": custom_info_types,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Construct a storage_config containing the target Bigquery info.
    storage_config = {
        "big_query_options": {
            "table_reference": {
                "project_id": bigquery_project,
                "dataset_id": dataset_id,
                "table_id": table_id,
            }
        }
    }

    # Convert the project id into full resource ids.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            "Info type: {}; Count: {}".format(
                                finding.info_type.name, finding.count
                            )
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectBigquery searches for the given info types in the given Bigquery dataset table.
func inspectBigquery(w io.Writer, projectID string, infoTypeNames []string, customDictionaries []string, customRegexes []string, pubSubTopic, pubSubSub, dataProject, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// infoTypeNames := []string{"US_SOCIAL_SECURITY_NUMBER"}
	// customDictionaries := []string{...}
	// customRegexes := []string{...}
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// dataProject := "my-data-project-ID"
	// datasetID := "my_dataset"
	// tableID := "mytable"

	ctx := context.Background()

	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}

	// Convert the info type strings to a list of InfoTypes.
	var infoTypes []*dlppb.InfoType
	for _, it := range infoTypeNames {
		infoTypes = append(infoTypes, &dlppb.InfoType{Name: it})
	}
	// Convert the custom dictionary word lists and custom regexes to a list of CustomInfoTypes.
	var customInfoTypes []*dlppb.CustomInfoType
	for idx, it := range customDictionaries {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_DICTIONARY_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Dictionary_{
				Dictionary: &dlppb.CustomInfoType_Dictionary{
					Source: &dlppb.CustomInfoType_Dictionary_WordList_{
						WordList: &dlppb.CustomInfoType_Dictionary_WordList{
							Words: strings.Split(it, ","),
						},
					},
				},
			},
		})
	}
	for idx, it := range customRegexes {
		customInfoTypes = append(customInfoTypes, &dlppb.CustomInfoType{
			InfoType: &dlppb.InfoType{
				Name: fmt.Sprintf("CUSTOM_REGEX_%d", idx),
			},
			Type: &dlppb.CustomInfoType_Regex_{
				Regex: &dlppb.CustomInfoType_Regex{
					Pattern: it,
				},
			},
		})
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("pubsub.NewClient: %w", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	if exists, err := t.Exists(ctx); err != nil {
		return fmt.Errorf("t.Exists: %w", err)
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	if exists, err := s.Exists(ctx); err != nil {
		return fmt.Errorf("s.Exits: %w", err)
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return fmt.Errorf("CreateSubscription: %w", err)
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: &dlppb.InspectJobConfig{
				// StorageConfig describes where to find the data.
				StorageConfig: &dlppb.StorageConfig{
					Type: &dlppb.StorageConfig_BigQueryOptions{
						BigQueryOptions: &dlppb.BigQueryOptions{
							TableReference: &dlppb.BigQueryTable{
								ProjectId: dataProject,
								DatasetId: datasetID,
								TableId:   tableID,
							},
						},
					},
				},
				// InspectConfig describes what fields to look for.
				InspectConfig: &dlppb.InspectConfig{
					InfoTypes:       infoTypes,
					CustomInfoTypes: customInfoTypes,
					MinLikelihood:   dlppb.Likelihood_POSSIBLE,
					Limits: &dlppb.InspectConfig_FindingLimits{
						MaxFindingsPerRequest: 10,
					},
					IncludeQuote: true,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the inspect job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Error getting completed job: %v\n", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
			return
		}
		for _, s := range r {
			fmt.Fprintf(w, "  Found %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return fmt.Errorf("Receive: %w", err)
	}
	return nil
}

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryOptions;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\InspectConfig\FindingLimits;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\Dlp\V2\Likelihood;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect a BigQuery table , using Pub/Sub for job status notifications.
 *
 * @param string $callingProjectId  The project ID to run the API call under
 * @param string $dataProjectId     The project ID containing the target Datastore
 * @param string $topicId           The name of the Pub/Sub topic to notify once the job completes
 * @param string $subscriptionId    The name of the Pub/Sub subscription to use when listening for job
 * @param string $datasetId         The ID of the dataset to inspect
 * @param string $tableId           The ID of the table to inspect
 * @param int    $maxFindings       (Optional) The maximum number of findings to report per request (0 = server maximum)
 */
function inspect_bigquery(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $datasetId,
    string $tableId,
    int $maxFindings = 0
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // The infoTypes of information to match
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $creditCardNumberInfoType = (new InfoType())
        ->setName('CREDIT_CARD_NUMBER');
    $infoTypes = [$personNameInfoType, $creditCardNumberInfoType];

    // The minimum likelihood required before returning a match
    $minLikelihood = likelihood::LIKELIHOOD_UNSPECIFIED;

    // Specify finding limits
    $limits = (new FindingLimits())
        ->setMaxFindingsPerRequest($maxFindings);

    // Construct items to be inspected
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($dataProjectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    $bigQueryOptions = (new BigQueryOptions())
        ->setTableReference($bigqueryTable);

    $storageConfig = (new StorageConfig())
        ->setBigQueryOptions($bigQueryOptions);

    // Construct the inspect config object
    $inspectConfig = (new InspectConfig())
        ->setMinLikelihood($minLikelihood)
        ->setLimits($limits)
        ->setInfoTypes($infoTypes);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct inspect job config to run
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setInspectJob($inspectJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                print('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.BigQuery.V2;
using Google.Cloud.Dlp.V2;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Collections.Generic;
using System.Threading;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectBigQuery
{
    public static object Inspect(
        string projectId,
        Likelihood minLikelihood,
        int maxFindings,
        bool includeQuote,
        IEnumerable<FieldId> identifyingFields,
        IEnumerable<InfoType> infoTypes,
        IEnumerable<CustomInfoType> customInfoTypes,
        string datasetId,
        string tableId)
    {
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = new StorageConfig
            {
                BigQueryOptions = new BigQueryOptions
                {
                    TableReference = new Google.Cloud.Dlp.V2.BigQueryTable
                    {
                        ProjectId = projectId,
                        DatasetId = datasetId,
                        TableId = tableId,
                    },
                    IdentifyingFields =
                        {
                            identifyingFields
                        }
                },

                TimespanConfig = new StorageConfig.Types.TimespanConfig
                {
                    StartTime = Timestamp.FromDateTime(System.DateTime.UtcNow.AddYears(-1)),
                    EndTime = Timestamp.FromDateTime(System.DateTime.UtcNow)
                }
            },

            InspectConfig = new InspectConfig
            {
                InfoTypes = { infoTypes },
                CustomInfoTypes = { customInfoTypes },
                Limits = new FindingLimits
                {
                    MaxFindingsPerRequest = maxFindings
                },
                ExcludeInfoTypes = false,
                IncludeQuote = includeQuote,
                MinLikelihood = minLikelihood
            },
            Actions =
                {
                    new Google.Cloud.Dlp.V2.Action
                    {
                        // Save results in BigQuery Table
                        SaveFindings = new Google.Cloud.Dlp.V2.Action.Types.SaveFindings
                        {
                            OutputConfig = new OutputStorageConfig
                            {
                                Table = new Google.Cloud.Dlp.V2.BigQueryTable
                                {
                                    ProjectId = projectId,
                                    DatasetId = datasetId,
                                    TableId = tableId
                                }
                            }
                        },
                    }
                }
        };

        // Issue Create Dlp Job Request
        var client = DlpServiceClient.Create();
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            Parent = new LocationName(projectId, "global").ToString(),
        };

        // We need created job name
        var dlpJob = client.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Make sure the job finishes before inspecting the results.
        // Alternatively, we can inspect results opportunistically, but
        // for testing purposes, we want consistent outcome
        var finishedJob = EnsureJobFinishes(projectId, jobName);
        var bigQueryClient = BigQueryClient.Create(projectId);
        var table = bigQueryClient.GetTable(datasetId, tableId);

        // Return only first page of 10 rows
        Console.WriteLine("DLP v2 Results:");
        var firstPage = table.ListRows(new ListRowsOptions { StartIndex = 0, PageSize = 10 });
        foreach (var item in firstPage)
        {
            Console.WriteLine($"\t {item[""]}");
        }

        return finishedJob;
    }

    private static DlpJob EnsureJobFinishes(string projectId, string jobName)
    {
        var client = DlpServiceClient.Create();
        var request = new GetDlpJobRequest
        {
            DlpJobName = new DlpJobName(projectId, jobName),
        };

        // Simple logic that gives the job 5*30 sec at most to complete - for testing purposes only
        var numOfAttempts = 5;
        do
        {
            var dlpJob = client.GetDlpJob(request);
            numOfAttempts--;
            if (dlpJob.State != DlpJob.Types.JobState.Running)
            {
                return dlpJob;
            }

            Thread.Sleep(TimeSpan.FromSeconds(30));
        } while (numOfAttempts > 0);

        throw new InvalidOperationException("Job did not complete in time");
    }
}

Mengonfigurasi pemeriksaan penyimpanan

Untuk memeriksa lokasi Cloud Storage, jenis Datastore, atau tabel BigQuery, kirim permintaan ke metode projects.dlpJobs.create DLP API yang berisi setidaknya lokasi data yang akan dipindai dan data yang akan dipindai. Di luar parameter yang diperlukan tersebut, Anda juga dapat menentukan tempat untuk menulis hasil pemindaian, batas ukuran dan kemungkinan, serta banyak lagi. Permintaan yang berhasil akan membuat instance objek DlpJob, yang dibahas dalam "Mengambil hasil pemeriksaan".

Opsi konfigurasi yang tersedia dirangkum di sini:

  • Objek InspectJobConfig: Berisi informasi konfigurasi untuk tugas pemeriksaan. Perhatikan bahwa objek InspectJobConfig juga digunakan oleh objek JobTriggers untuk menjadwalkan pembuatan DlpJob. Objek ini mencakup:

    • Objek StorageConfig: Wajib. Berisi detail tentang repositori penyimpanan yang akan dipindai:

      • Salah satu dari hal berikut harus disertakan dalam objek StorageConfig, bergantung pada jenis repositori penyimpanan yang dipindai:

      • Objek CloudStorageOptions: Berisi informasi tentang bucket Cloud Storage yang akan dipindai.

      • Objek DatastoreOptions: Berisi informasi tentang set data Datastore yang akan dipindai.

      • Objek BigQueryOptions: Berisi informasi tentang tabel BigQuery (dan, secara opsional, mengidentifikasi kolom) untuk dipindai. Objek ini juga memungkinkan pengambilan sampel hasil. Untuk mengetahui informasi selengkapnya, lihat Mengaktifkan pengambilan sampel hasil di bawah.

      • Objek TimespanConfig: Opsional. Menentukan rentang waktu item yang akan disertakan dalam pemindaian.

    • Objek InspectConfig: Wajib. Menentukan apa yang akan dipindai, seperti nilai infoTypes dan kemungkinan.

      • Objek InfoType: Wajib. Satu atau beberapa nilai infoType yang akan dipindai.
      • Enumerasi Likelihood: Opsional. Jika ditetapkan, Perlindungan Data Sensitif hanya akan menampilkan temuan yang sama dengan atau di atas batas kemungkinan ini. Jika enum ini dihilangkan, nilai defaultnya adalah POSSIBLE.
      • Objek FindingLimits: Opsional. Jika ditetapkan, objek ini memungkinkan Anda menentukan batas jumlah temuan yang ditampilkan.
      • Parameter includeQuote: Opsional. Nilai defaultnya adalah false. Jika ditetapkan ke true, setiap temuan akan menyertakan kutipan kontekstual dari data yang memicunya.
      • Parameter excludeInfoTypes: Opsional. Nilai defaultnya adalah false. Jika ditetapkan ke true, hasil pemindaian akan mengecualikan informasi jenis untuk temuan tersebut.
      • Objek CustomInfoType: Satu atau beberapa infoTypes kustom yang dibuat pengguna. Untuk informasi selengkapnya tentang membuat infoType kustom, lihat Membuat detektor infoType kustom.
    • String inspectTemplateName: Opsional. Menentukan template yang akan digunakan untuk mengisi nilai default dalam objek InspectConfig. Jika Anda telah menentukan InspectConfig, nilai template akan digabungkan.

    • Objek Action: Opsional. Satu atau beberapa tindakan untuk dijalankan pada penyelesaian tugas. Setiap tindakan dijalankan sesuai urutan yang tercantum. Di sini, Anda menentukan tempat untuk menulis hasil, atau apakah akan memublikasikan notifikasi ke topik Pub/Sub.

  • jobId: Opsional. ID untuk tugas yang ditampilkan oleh Perlindungan Data Sensitif. Jika jobId dihilangkan atau kosong, sistem akan membuat ID untuk tugas tersebut. Jika ditentukan, tugas akan diberi nilai ID ini. ID tugas harus unik, serta dapat berisi huruf besar dan kecil, angka, dan tanda hubung; artinya, ID tersebut harus cocok dengan ekspresi reguler berikut: [a-zA-Z\\d-]+.

Membatasi jumlah konten yang diperiksa

Jika Anda memindai tabel BigQuery atau bucket Cloud Storage, Perlindungan Data Sensitif menyertakan cara untuk memindai subset set data. Hal ini memiliki efek memberikan sampling hasil pemindaian tanpa menimbulkan potensi biaya pemindaian seluruh set data.

Bagian berikut berisi informasi tentang membatasi ukuran pemindaian Cloud Storage dan pemindaian BigQuery.

Membatasi pemindaian Cloud Storage

Anda dapat mengaktifkan pengambilan sampel di Cloud Storage dengan membatasi jumlah data yang dipindai. Anda dapat menginstruksikan DLP API untuk hanya memindai file berukuran tertentu, hanya jenis file tertentu, dan hanya dalam persentase tertentu dari jumlah total file dalam kumpulan file input. Untuk melakukannya, tentukan kolom opsional berikut dalam CloudStorageOptions:

  • bytesLimitPerFile: Menetapkan jumlah byte maksimum untuk dipindai dari file. Jika ukuran file yang dipindai lebih besar dari nilai ini, byte yang tersisa akan dihilangkan. Menetapkan kolom ini tidak berpengaruh pada jenis file tertentu. Untuk mengetahui informasi selengkapnya, lihat Batas byte yang dipindai per file.
  • fileTypes[]: Mencantumkan FileTypes untuk disertakan dalam pemindaian. Ini dapat disetel ke satu atau beberapa jenis terenumerasi berikut.
  • filesLimitPercent: Membatasi jumlah file yang akan dipindai ke persentase input yang ditentukan FileSet. Menentukan 0 atau 100 di sini menunjukkan bahwa tidak ada batas.
  • sampleMethod: Cara membuat sampel byte jika tidak semua byte dipindai. Penentuan nilai ini hanya bermanfaat jika digunakan bersama bytesLimitPerFile. Jika tidak ditentukan, pemindaian akan dimulai dari atas. Kolom ini dapat ditetapkan ke salah satu dari dua nilai:
    • TOP: Pemindaian dimulai dari atas.
    • RANDOM_START: Untuk setiap file yang lebih besar dari ukuran yang ditentukan dalam bytesLimitPerFile, pilih offset secara acak untuk memulai pemindaian. Byte yang dipindai berdekatan.

Contoh berikut menunjukkan penggunaan DLP API untuk memindai nama orang di subset bucket Cloud Storage 90%. Pemindaian dimulai dari lokasi acak dalam set data, dan hanya menyertakan file teks berukuran kurang dari 200 byte.

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

public class InspectStorageWithSampling
{
    public static async Task<DlpJob> InspectAsync(
        string projectId,
        string gcsUri,
        string topicId,
        string subId,
        Likelihood minLikelihood = Likelihood.Possible,
        IEnumerable<InfoType> infoTypes = null)
    {

        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Construct Storage config by specifying the GCS file to be inspected
        // and sample method.
        var storageConfig = new StorageConfig
        {
            CloudStorageOptions = new CloudStorageOptions
            {
                FileSet = new CloudStorageOptions.Types.FileSet
                {
                    Url = gcsUri
                },
                BytesLimitPerFile = 200,
                FileTypes = { new FileType[] { FileType.Csv } },
                FilesLimitPercent = 90,
                SampleMethod = CloudStorageOptions.Types.SampleMethod.RandomStart
            }
        };

        // Construct the Inspect Config and specify the type of info the inspection
        // will look for.
        var inspectConfig = new InspectConfig
        {
            InfoTypes =
            {
                infoTypes ?? new InfoType[] { new InfoType { Name = "PERSON_NAME" } }
            },
            IncludeQuote = true,
            MinLikelihood = minLikelihood
        };

        // Construct the pubsub action.
        var actions = new Action[]
        {
            new Action
            {
                PubSub = new Action.Types.PublishToPubSub
                {
                    Topic = $"projects/{projectId}/topics/{topicId}"
                }
            }
        };

        // Construct the inspect job config using above created objects.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Issue Create Dlp Job Request
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            ParentAsLocationName = new LocationName(projectId, "global"),
        };

        // We keep the name of the job that we just created.
        var dlpJob = dlp.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Listen to pub/sub for the job
        var subscriptionName = new SubscriptionName(projectId, subId);
        var subscriber = await SubscriberClient.CreateAsync(
            subscriptionName);

        await subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == jobName)
            {
                subscriber.StopAsync(cancel);
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        // Get the latest state of the job from the service
        var resultJob = dlp.GetDlpJob(new GetDlpJobRequest
        {
            DlpJobName = DlpJobName.Parse(jobName)
        });

        // Parse the response and process results.
        System.Console.WriteLine($"Job status: {resultJob.State}");
        System.Console.WriteLine($"Job Name: {resultJob.Name}");

        var result = resultJob.InspectDetails.Result;
        foreach (var infoType in result.InfoTypeStats)
        {
            System.Console.WriteLine($"Info Type: {infoType.InfoType.Name}");
            System.Console.WriteLine($"Count: {infoType.Count}");
        }
        return resultJob;
    }
}

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectGcsFileWithSampling inspects a storage with sampling
func inspectGcsFileWithSampling(w io.Writer, projectID, gcsUri, topicID, subscriptionId string) error {
	// projectId := "your-project-id"
	// gcsUri := "gs://" + "your-bucket-name" + "/path/to/your/file.txt"
	// topicID := "your-pubsub-topic-id"
	// subscriptionId := "your-pubsub-subscription-id"

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}
	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the GCS file to be inspected and sampling configuration
	var cloudStorageOptions = &dlppb.CloudStorageOptions{
		FileSet: &dlppb.CloudStorageOptions_FileSet{
			Url: gcsUri,
		},
		BytesLimitPerFile: int64(200),
		FileTypes: []dlppb.FileType{
			dlppb.FileType_TEXT_FILE,
		},
		FilesLimitPercent: int32(90),
		SampleMethod:      dlppb.CloudStorageOptions_RANDOM_START,
	}

	var storageConfig = &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_CloudStorageOptions{
			CloudStorageOptions: cloudStorageOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	// Specify how the content should be inspected.
	var inspectConfig = &dlppb.InspectConfig{
		InfoTypes: []*dlppb.InfoType{
			{Name: "PERSON_NAME"},
		},
		ExcludeInfoTypes: true,
		IncludeQuote:     true,
		MinLikelihood:    dlppb.Likelihood_POSSIBLE,
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(topicID)
	if exists, err := t.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, topicID); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(subscriptionId)
	if exists, err := s.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, subscriptionId, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + topicID

	var action = &dlppb.Action{
		Action: &dlppb.Action_PubSub{
			PubSub: &dlppb.Action_PublishToPubSub{
				Topic: topic,
			},
		},
	}

	// Configure the long running job we want the service to perform.
	var inspectJobConfig = &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Use the client to send the request.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Job Created: %v", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()

		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "Error getting completed job: %v\n", err)
			return
		}
		r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
		if len(r) == 0 {
			fmt.Fprintf(w, "No results")
			return
		}
		for _, s := range r {
			fmt.Fprintf(w, "\nFound %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
		}
	})
	if err != nil {
		return err
	}
	return nil

}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.CloudStorageOptions;
import com.google.privacy.dlp.v2.CloudStorageOptions.FileSet;
import com.google.privacy.dlp.v2.CloudStorageOptions.SampleMethod;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FileType;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.Likelihood;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class InspectGcsFileWithSampling {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String gcsUri = "gs://" + "your-bucket-name" + "/path/to/your/file.txt";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectGcsFileWithSampling(projectId, gcsUri, topicId, subscriptionId);
  }

  // Inspects a file in a Google Cloud Storage Bucket.
  public static void inspectGcsFileWithSampling(
      String projectId, String gcsUri, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the GCS file to be inspected and sampling configuration
      CloudStorageOptions cloudStorageOptions =
          CloudStorageOptions.newBuilder()
              .setFileSet(FileSet.newBuilder().setUrl(gcsUri))
              .setBytesLimitPerFile(200)
              .addFileTypes(FileType.TEXT_FILE)
              .setFilesLimitPercent(90)
              .setSampleMethod(SampleMethod.RANDOM_START)
              .build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setCloudStorageOptions(cloudStorageOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PERSON_NAME").build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder()
              .addInfoTypes(infoType)
              .setExcludeInfoTypes(true)
              .setIncludeQuote(true)
              .setMinLikelihood(Likelihood.POSSIBLE)
              .build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The gcs file path
// const gcsUri = 'gs://" + "your-bucket-name" + "/path/to/your/file.txt';

// Specify the type of info the inspection will look for.
// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
// const infoTypes = [{ name: 'PERSON_NAME' }];

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// DLP Job max time (in milliseconds)
const DLP_JOB_WAIT_TIME = 15 * 1000 * 60;

async function inspectGcsFileSampling() {
  // Specify the GCS file to be inspected and sampling configuration
  const storageItemConfig = {
    cloudStorageOptions: {
      fileSet: {url: gcsUri},
      bytesLimitPerFile: 200,
      filesLimitPercent: 90,
      fileTypes: [DLP.protos.google.privacy.dlp.v2.FileType.TEXT_FILE],
      sampleMethod:
        DLP.protos.google.privacy.dlp.v2.CloudStorageOptions.SampleMethod
          .RANDOM_START,
    },
  };

  // Specify how the content should be inspected.
  const inspectConfig = {
    infoTypes: infoTypes,
    minLikelihood: DLP.protos.google.privacy.dlp.v2.Likelihood.POSSIBLE,
    includeQuote: true,
    excludeInfoTypes: true,
  };

  // Specify the action that is triggered when the job completes.
  const actions = [
    {
      pubSub: {
        topic: `projects/${projectId}/topics/${topicId}`,
      },
    },
  ];

  // Create the request for the job configured above.
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: inspectConfig,
      storageConfig: storageItemConfig,
      actions: actions,
    },
  };

  // Use the client to send the request.
  const [topicResponse] = await pubsub.topic(topicId).get();

  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);

  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    // Set up the timeout
    const timer = setTimeout(() => {
      reject(new Error('Timeout'));
    }, DLP_JOB_WAIT_TIME);

    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        clearTimeout(timer);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      clearTimeout(timer);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}

await inspectGcsFileSampling();

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryOptions\SampleMethod;
use Google\Cloud\Dlp\V2\CloudStorageOptions;
use Google\Cloud\Dlp\V2\CloudStorageOptions\FileSet;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect storage with sampling.
 * The following examples demonstrate using the Cloud DLP API to scan a 90% subset of a
 * Cloud Storage bucket for person names. The scan starts from a random location in the dataset
 * and only includes text files under 200 bytes.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $gcsUri            Google Cloud Storage file url.
 * @param string $topicId           The ID of the Pub/Sub topic to notify once the job completes.
 * @param string $subscriptionId    The ID of the Pub/Sub subscription to use when listening for job.
 */
function inspect_gcs_with_sampling(
    // TODO(developer): Replace sample parameters before running the code.
    string $callingProjectId,
    string $gcsUri = 'gs://GOOGLE_STORAGE_BUCKET_NAME/dlp_sample.csv',
    string $topicId = 'dlp-pubsub-topic',
    string $subscriptionId = 'dlp_subcription'
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Construct the items to be inspected.
    $cloudStorageOptions = (new CloudStorageOptions())
        ->setFileSet((new FileSet())
            ->setUrl($gcsUri))
        ->setBytesLimitPerFile(200)
        ->setFilesLimitPercent(90)
        ->setSampleMethod(SampleMethod::RANDOM_START);

    $storageConfig = (new StorageConfig())
        ->setCloudStorageOptions($cloudStorageOptions);

    // Specify the type of info the inspection will look for.
    $phoneNumberInfoType = (new InfoType())
        ->setName('PHONE_NUMBER');
    $emailAddressInfoType = (new InfoType())
        ->setName('EMAIL_ADDRESS');
    $cardNumberInfoType = (new InfoType())
        ->setName('CREDIT_CARD_NUMBER');
    $infoTypes = [$phoneNumberInfoType, $emailAddressInfoType, $cardNumberInfoType];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Construct the action to run when job completes.
    $action = (new Action())
        ->setPubSub((new PublishToPubSub())
            ->setTopic($topic->name()));

    // Construct inspect job config to run.
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request.
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJob
    ]);

    // Poll Pub/Sub using exponential backoff until job finishes.
    // Consider using an asynchronous execution model such as Cloud Functions.
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $job = $dlp->getDlpJob($job->getName());
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while.
            }
        }
        printf('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds.
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout.

    // Print finding counts.
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading
from typing import List

import google.cloud.dlp
import google.cloud.pubsub

def inspect_gcs_with_sampling(
    project: str,
    bucket: str,
    topic_id: str,
    subscription_id: str,
    info_types: List[str] = None,
    file_types: List[str] = None,
    min_likelihood: str = None,
    max_findings: int = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze files in GCS by
    limiting the amount of data to be scanned.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        bucket: The name of the GCS bucket containing the file, as a string.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        info_types: A list of strings representing infoTypes to look for.
            A full list of info type categories can be fetched from the API.
        file_types: Type of files in gcs bucket where the inspection would happen.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Prepare info_types by converting the list of strings into a list of
    # dictionaries.
    if not info_types:
        info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
    info_types = [{"name": info_type} for info_type in info_types]

    # Specify how the content should be inspected. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": info_types,
        "exclude_info_types": True,
        "include_quote": True,
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
    }

    # Setting default file types as CSV files
    if not file_types:
        file_types = ["CSV"]

    # Construct a cloud_storage_options dictionary with the bucket's URL.
    url = f"gs://{bucket}/*"
    storage_config = {
        "cloud_storage_options": {
            "file_set": {"url": url},
            "bytes_limit_per_file": 200,
            "file_types": file_types,
            "files_limit_percent": 90,
            "sample_method": "RANDOM_START",
        }
    }

    # Tell the API where to send a notification when the job is complete.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into full resource ids.
    parent = f"projects/{project}/locations/global"

    # Call the API
    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message):
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")
                if job.inspect_details.result.info_type_stats:
                    print("Findings:")
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()
        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

REST

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "cloudStorageOptions":{
        "fileSet":{
          "url":"gs://[BUCKET-NAME]/*"
        },
        "bytesLimitPerFile":"200",
        "fileTypes":[
          "TEXT_FILE"
        ],
        "filesLimitPercent":90,
        "sampleMethod":"RANDOM_START"
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"PERSON_NAME"
        }
      ],
      "excludeInfoTypes":true,
      "includeQuote":true,
      "minLikelihood":"POSSIBLE"
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"testingdlp"
            },
            "outputSchema":"BASIC_COLUMNS"
          }
        }
      }
    ]
  }
}

Setelah mengirim input JSON dalam permintaan POST ke endpoint yang ditentukan, tugas Perlindungan Data Sensitif akan dibuat, dan API mengirimkan respons berikut.

Output JSON:

{
  "name":"projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type":"INSPECT_JOB",
  "state":"PENDING",
  "inspectDetails":{
    "requestedOptions":{
      "snapshotInspectTemplate":{

      },
      "jobConfig":{
        "storageConfig":{
          "cloudStorageOptions":{
            "fileSet":{
              "url":"gs://[BUCKET_NAME]/*"
            },
            "bytesLimitPerFile":"200",
            "fileTypes":[
              "TEXT_FILE"
            ],
            "sampleMethod":"TOP",
            "filesLimitPercent":90
          }
        },
        "inspectConfig":{
          "infoTypes":[
            {
              "name":"PERSON_NAME"
            }
          ],
          "minLikelihood":"POSSIBLE",
          "limits":{

          },
          "includeQuote":true,
          "excludeInfoTypes":true
        },
        "actions":[
          {
            "saveFindings":{
              "outputConfig":{
                "table":{
                  "projectId":"[PROJECT-ID]",
                  "datasetId":"[DATASET-ID]",
                  "tableId":"[TABLE-ID]"
                },
                "outputSchema":"BASIC_COLUMNS"
              }
            }
          }
        ]
      }
    }
  },
  "createTime":"2018-05-30T22:22:08.279Z"
}

Membatasi pemindaian BigQuery

Untuk mengaktifkan pengambilan sampel di BigQuery dengan membatasi jumlah data yang dipindai, tentukan kolom opsional berikut dalam BigQueryOptions:

  • rowsLimit: Jumlah baris maksimum untuk dipindai. Jika tabel memiliki lebih banyak baris daripada nilai ini, baris lainnya akan dihilangkan. Jika tidak disetel, atau jika disetel ke 0, semua baris akan dipindai.
  • rowsLimitPercent: Persentase maksimum baris yang dipindai (antara 0 dan 100). Baris yang tersisa dihilangkan. Jika nilai ini ditetapkan ke 0 atau 100, tidak akan ada batas. Nilai defaultnya adalah 0. Hanya rowsLimit dan rowsLimitPercent yang dapat ditentukan.

  • sampleMethod: Cara mengambil sampel baris jika tidak semua baris dipindai. Jika tidak ditentukan, pemindaian akan dimulai dari atas. Kolom ini dapat ditetapkan ke salah satu dari dua nilai berikut:

    • TOP: Pemindaian dimulai dari atas.
    • RANDOM_START: Pemindaian dimulai dari baris yang dipilih secara acak.
  • excludedFields: Kolom tabel yang secara unik mengidentifikasi kolom yang akan dikecualikan agar tidak dibaca. Hal ini dapat membantu mengurangi jumlah data yang dipindai dan menurunkan biaya keseluruhan tugas inspeksi.

  • includedFields: Kolom tabel yang secara unik mengidentifikasi baris tertentu dalam tabel yang akan dipindai.

Fitur lain yang berguna untuk membatasi data yang sedang dipindai, terutama saat memindai tabel yang dipartisi, adalah TimespanConfig. TimespanConfig memungkinkan Anda memfilter baris tabel BigQuery dengan memberikan nilai waktu mulai dan berakhir untuk menentukan rentang waktu. Perlindungan Data Sensitif hanya memindai baris yang berisi stempel waktu dalam rentang waktu tersebut.

Contoh berikut menunjukkan penggunaan DLP API untuk memindai subset 1.000 baris dari tabel BigQuery. Pemindaian dimulai dari baris acak.

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// inspectBigQueryTableWithSampling inspect bigQueries for sensitive data with sampling
func inspectBigQueryTableWithSampling(w io.Writer, projectID, topicID, subscriptionID string) error {
	// projectId := "your-project-id"
	// topicID := "your-pubsub-topic-id"
	// or provide a topicID name to create one
	// subscriptionID := "your-pubsub-subscription-id"
	// or provide a subscription name to create one

	ctx := context.Background()

	// Initialize a client once and reuse it to send multiple requests. Clients
	// are safe to use across goroutines. When the client is no longer needed,
	// call the Close method to cleanup its resources.
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return err
	}

	// Closing the client safely cleans up background resources.
	defer client.Close()

	// Specify the BigQuery table to be inspected.
	tableReference := &dlppb.BigQueryTable{
		ProjectId: "bigquery-public-data",
		DatasetId: "usa_names",
		TableId:   "usa_1910_current",
	}

	bigQueryOptions := &dlppb.BigQueryOptions{
		TableReference: tableReference,
		RowsLimit:      int64(10000),
		SampleMethod:   dlppb.BigQueryOptions_RANDOM_START,
		IdentifyingFields: []*dlppb.FieldId{
			{Name: "name"},
		},
	}

	// Provide storage config with BigqueryOptions
	storageConfig := &dlppb.StorageConfig{
		Type: &dlppb.StorageConfig_BigQueryOptions{
			BigQueryOptions: bigQueryOptions,
		},
	}

	// Specify the type of info the inspection will look for.
	// See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
	infoTypes := []*dlppb.InfoType{
		{Name: "PERSON_NAME"},
	}

	// Specify how the content should be inspected.
	inspectConfig := &dlppb.InspectConfig{
		InfoTypes:    infoTypes,
		IncludeQuote: true,
	}

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(topicID)
	if exists, err := t.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if t, err = pubsubClient.CreateTopic(ctx, topicID); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(subscriptionID)
	if exists, err := s.Exists(ctx); err != nil {
		return err
	} else if !exists {
		if s, err = pubsubClient.CreateSubscription(ctx, subscriptionID, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := fmt.Sprintf("projects/%s/topics/%s", projectID, topicID)

	action := &dlppb.Action{
		Action: &dlppb.Action_PubSub{
			PubSub: &dlppb.Action_PublishToPubSub{
				Topic: topic,
			},
		},
	}

	// Configure the long running job we want the service to perform.
	inspectJobConfig := &dlppb.InspectJobConfig{
		StorageConfig: storageConfig,
		InspectConfig: inspectConfig,
		Actions: []*dlppb.Action{
			action,
		},
	}

	// Create the request for the job configured above.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_InspectJob{
			InspectJob: inspectJobConfig,
		},
	}

	// Use the client to send the request.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Job Created: %v", j.GetName())

	// Wait for the inspect job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	c, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(c, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()

		// Stop listening for more messages.
		defer cancel()
	})
	if err != nil {
		return err
	}

	resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
		Name: j.GetName(),
	})
	if err != nil {
		return err
	}
	r := resp.GetInspectDetails().GetResult().GetInfoTypeStats()
	if len(r) == 0 {
		fmt.Fprintf(w, "No results")
		return err
	}
	for _, s := range r {
		fmt.Fprintf(w, "\nFound %v instances of infoType %v\n", s.GetCount(), s.GetInfoType().GetName())
	}
	return nil

}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.BigQueryOptions;
import com.google.privacy.dlp.v2.BigQueryOptions.SampleMethod;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.InfoType;
import com.google.privacy.dlp.v2.InfoTypeStats;
import com.google.privacy.dlp.v2.InspectConfig;
import com.google.privacy.dlp.v2.InspectDataSourceDetails;
import com.google.privacy.dlp.v2.InspectJobConfig;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.StorageConfig;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class InspectBigQueryTableWithSampling {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String topicId = "your-pubsub-topic-id";
    String subscriptionId = "your-pubsub-subscription-id";
    inspectBigQueryTableWithSampling(projectId, topicId, subscriptionId);
  }

  // Inspects a BigQuery Table
  public static void inspectBigQueryTableWithSampling(
      String projectId, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DlpServiceClient dlp = DlpServiceClient.create()) {
      // Specify the BigQuery table to be inspected.
      BigQueryTable tableReference =
          BigQueryTable.newBuilder()
              .setProjectId("bigquery-public-data")
              .setDatasetId("usa_names")
              .setTableId("usa_1910_current")
              .build();

      BigQueryOptions bigQueryOptions =
          BigQueryOptions.newBuilder()
              .setTableReference(tableReference)
              .setRowsLimit(1000)
              .setSampleMethod(SampleMethod.RANDOM_START)
              .addIdentifyingFields(FieldId.newBuilder().setName("name"))
              .build();

      StorageConfig storageConfig =
          StorageConfig.newBuilder().setBigQueryOptions(bigQueryOptions).build();

      // Specify the type of info the inspection will look for.
      // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
      InfoType infoType = InfoType.newBuilder().setName("PERSON_NAME").build();

      // Specify how the content should be inspected.
      InspectConfig inspectConfig =
          InspectConfig.newBuilder().addInfoTypes(infoType).setIncludeQuote(true).build();

      // Specify the action that is triggered when the job completes.
      String pubSubTopic = String.format("projects/%s/topics/%s", projectId, topicId);
      Action.PublishToPubSub publishToPubSub =
          Action.PublishToPubSub.newBuilder().setTopic(pubSubTopic).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the long running job we want the service to perform.
      InspectJobConfig inspectJobConfig =
          InspectJobConfig.newBuilder()
              .setStorageConfig(storageConfig)
              .setInspectConfig(inspectConfig)
              .addActions(action)
              .build();

      // Create the request for the job configured above.
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setInspectJob(inspectJobConfig)
              .build();

      // Use the client to send the request.
      final DlpJob dlpJob = dlp.createDlpJob(createDlpJobRequest);
      System.out.println("Job created: " + dlpJob.getName());

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Get the latest state of the job from the service
      GetDlpJobRequest request = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();
      DlpJob completedJob = dlp.getDlpJob(request);

      // Parse the response and process results.
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());
      InspectDataSourceDetails.Result result = completedJob.getInspectDetails().getResult();
      System.out.println("Findings: ");
      for (InfoTypeStats infoTypeStat : result.getInfoTypeStatsList()) {
        System.out.print("\tInfo type: " + infoTypeStat.getInfoType().getName());
        System.out.println("\tCount: " + infoTypeStat.getCount());
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const dataProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// DLP Job max time (in milliseconds)
const DLP_JOB_WAIT_TIME = 15 * 1000 * 60;

async function inspectBigqueryWithSampling() {
  // Specify the type of info the inspection will look for.
  // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
  const infoTypes = [{name: 'PERSON_NAME'}];

  // Specify the BigQuery options required for inspection.
  const storageItem = {
    bigQueryOptions: {
      tableReference: {
        projectId: dataProjectId,
        datasetId: datasetId,
        tableId: tableId,
      },
      rowsLimit: 1000,
      sampleMethod:
        DLP.protos.google.privacy.dlp.v2.BigQueryOptions.SampleMethod
          .RANDOM_START,
      includedFields: [{name: 'name'}],
    },
  };

  // Specify the action that is triggered when the job completes.
  const actions = [
    {
      pubSub: {
        topic: `projects/${projectId}/topics/${topicId}`,
      },
    },
  ];

  // Construct request for creating an inspect job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    inspectJob: {
      inspectConfig: {
        infoTypes: infoTypes,
        includeQuote: true,
      },
      storageConfig: storageItem,
      actions: actions,
    },
  };
  // Use the client to send the request.
  const [topicResponse] = await pubsub.topic(topicId).get();

  // Verify the Pub/Sub topic and listen for job notifications via an
  // existing subscription.
  const subscription = await topicResponse.subscription(subscriptionId);

  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;

  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    // Set up the timeout
    const timer = setTimeout(() => {
      reject(new Error('Timeout'));
    }, DLP_JOB_WAIT_TIME);

    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        clearTimeout(timer);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      clearTimeout(timer);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  const [job] = await dlp.getDlpJob({name: jobName});
  console.log(`Job ${job.name} status: ${job.state}`);

  const infoTypeStats = job.inspectDetails.result.infoTypeStats;
  if (infoTypeStats.length > 0) {
    infoTypeStats.forEach(infoTypeStat => {
      console.log(
        `  Found ${infoTypeStat.count} instance(s) of infoType ${infoTypeStat.infoType.name}.`
      );
    });
  } else {
    console.log('No findings.');
  }
}

await inspectBigqueryWithSampling();

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\BigQueryOptions;
use Google\Cloud\Dlp\V2\InfoType;
use Google\Cloud\Dlp\V2\InspectConfig;
use Google\Cloud\Dlp\V2\StorageConfig;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryOptions\SampleMethod;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\InspectJobConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Inspect BigQuery for sensitive data with sampling.
 * The following examples demonstrate using the Cloud Data Loss Prevention
 * API to scan a 1000-row subset of a BigQuery table. The scan starts from
 * a random row.
 *
 * @param string $callingProjectId  The project ID to run the API call under.
 * @param string $topicId           The Pub/Sub topic ID to notify once the job is completed.
 * @param string $subscriptionId    The Pub/Sub subscription ID to use when listening for job.
 * @param string $projectId         The Google Cloud Project ID.
 * @param string $datasetId         The BigQuery Dataset ID.
 * @param string $tableId           The BigQuery Table ID to be inspected.
 */
function inspect_bigquery_with_sampling(
    string $callingProjectId,
    string $topicId,
    string $subscriptionId,
    string $projectId,
    string $datasetId,
    string $tableId
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Specify the BigQuery table to be inspected.
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($projectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    $bigQueryOptions = (new BigQueryOptions())
        ->setTableReference($bigqueryTable)
        ->setRowsLimit(1000)
        ->setSampleMethod(SampleMethod::RANDOM_START)
        ->setIdentifyingFields([
            (new FieldId())
                ->setName('name')
        ]);

    $storageConfig = (new StorageConfig())
        ->setBigQueryOptions($bigQueryOptions);

    // Specify the type of info the inspection will look for.
    // See https://cloud.google.com/dlp/docs/infotypes-reference for complete list of info types
    $personNameInfoType = (new InfoType())
        ->setName('PERSON_NAME');
    $infoTypes = [$personNameInfoType];

    // Specify how the content should be inspected.
    $inspectConfig = (new InspectConfig())
        ->setInfoTypes($infoTypes)
        ->setIncludeQuote(true);

    // Specify the action that is triggered when the job completes.
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Configure the long running job we want the service to perform.
    $inspectJob = (new InspectJobConfig())
        ->setInspectConfig($inspectConfig)
        ->setStorageConfig($storageConfig)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $job = $dlp->createDlpJob($parent, [
        'inspectJob' => $inspectJob
    ]);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $job = $dlp->getDlpJob($job->getName());
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        printf('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $infoTypeStats = $job->getInspectDetails()->getResult()->getInfoTypeStats();
            if (count($infoTypeStats) === 0) {
                printf('No findings.' . PHP_EOL);
            } else {
                foreach ($infoTypeStats as $infoTypeStat) {
                    printf(
                        '  Found %s instance(s) of infoType %s' . PHP_EOL,
                        $infoTypeStat->getCount(),
                        $infoTypeStat->getInfoType()->getName()
                    );
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            printf('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            printf('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import threading

import google.cloud.dlp
import google.cloud.pubsub

def inspect_bigquery_table_with_sampling(
    project: str,
    topic_id: str,
    subscription_id: str,
    min_likelihood: str = None,
    max_findings: str = None,
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to analyze BigQuery data by limiting
    the amount of data to be scanned.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        topic_id: The id of the Cloud Pub/Sub topic to which the API will
            broadcast job completion. The topic must already exist.
        subscription_id: The id of the Cloud Pub/Sub subscription to listen on
            while waiting for job completion. The subscription must already
            exist and be subscribed to the topic.
        min_likelihood: A string representing the minimum likelihood threshold
            that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
            'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
        max_findings: The maximum number of findings to report; 0 = no maximum.
        timeout: The number of seconds to wait for a response from the API.
    """

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Specify how the content should be inspected. Keys which are None may
    # optionally be omitted entirely.
    inspect_config = {
        "info_types": [{"name": "PERSON_NAME"}],
        "min_likelihood": min_likelihood,
        "limits": {"max_findings_per_request": max_findings},
        "include_quote": True,
    }

    # Specify the BigQuery table to be inspected.
    # Here we are using public bigquery table.
    table_reference = {
        "project_id": "bigquery-public-data",
        "dataset_id": "usa_names",
        "table_id": "usa_1910_current",
    }

    # Construct a storage_config containing the target BigQuery info.
    storage_config = {
        "big_query_options": {
            "table_reference": table_reference,
            "rows_limit": 1000,
            "sample_method": "RANDOM_START",
            "identifying_fields": [{"name": "name"}],
        }
    }

    # Tell the API where to send a notification when the job is complete.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    actions = [{"pub_sub": {"topic": topic}}]

    # Construct the inspect_job, which defines the entire inspect content task.
    inspect_job = {
        "inspect_config": inspect_config,
        "storage_config": storage_config,
        "actions": actions,
    }

    # Convert the project id into full resource ids.
    parent = f"projects/{project}/locations/global"

    # Call the API
    operation = dlp.create_dlp_job(
        request={"parent": parent, "inspect_job": inspect_job}
    )
    print(f"Inspection operation started: {operation.name}")

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)

    # Set up a callback to acknowledge a message. This closes around an event
    # so that it can signal that it is done and the main thread can continue.
    job_done = threading.Event()

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        try:
            if message.attributes["DlpJobName"] == operation.name:
                # This is the message we're looking for, so acknowledge it.
                message.ack()

                # Now that the job is done, fetch the results and print them.
                job = dlp.get_dlp_job(request={"name": operation.name})
                print(f"Job name: {job.name}")

                if job.inspect_details.result.info_type_stats:
                    for finding in job.inspect_details.result.info_type_stats:
                        print(
                            f"Info type: {finding.info_type.name}; Count: {finding.count}"
                        )
                else:
                    print("No findings.")

                # Signal to the main thread that we can exit.
                job_done.set()
            else:
                # This is not the message we're looking for.
                message.drop()

        except Exception as e:
            # Because this is executing in a thread, an exception won't be
            # noted unless we print it manually.
            print(e)
            raise

    # Register the callback and wait on the event.
    subscriber.subscribe(subscription_path, callback=callback)
    finished = job_done.wait(timeout=timeout)
    if not finished:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat Library klien Perlindungan Data Sensitif.

Untuk mengautentikasi Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.InspectConfig.Types;

public class InspectBigQueryWithSampling
{
    public static async Task<DlpJob> InspectAsync(
        string projectId,
        int maxFindings,
        bool includeQuote,
        string topicId,
        string subId,
        Likelihood minLikelihood = Likelihood.Possible,
        IEnumerable<FieldId> identifyingFields = null,
        IEnumerable<InfoType> infoTypes = null)
    {

        // Instantiate the dlp client.
        var dlp = DlpServiceClient.Create();

        // Construct Storage config.
        var storageConfig = new StorageConfig
        {
            BigQueryOptions = new BigQueryOptions
            {
                TableReference = new BigQueryTable
                {
                    ProjectId = "bigquery-public-data",
                    DatasetId = "usa_names",
                    TableId = "usa_1910_current",
                },
                IdentifyingFields =
                {
                    identifyingFields ?? new FieldId[] { new FieldId { Name = "name" } }
                },
                RowsLimit = 100,
                SampleMethod = BigQueryOptions.Types.SampleMethod.RandomStart
            }
        };

        // Construct the inspect config.
        var inspectConfig = new InspectConfig
        {
            InfoTypes = { infoTypes ?? new InfoType[] { new InfoType { Name = "PERSON_NAME" } } },
            Limits = new FindingLimits
            {
                MaxFindingsPerRequest = maxFindings,
            },
            IncludeQuote = includeQuote,
            MinLikelihood = minLikelihood
        };

        // Construct the pubsub action.
        var actions = new Action[]
        {
            new Action
            {
                PubSub = new Action.Types.PublishToPubSub
                {
                    Topic = $"projects/{projectId}/topics/{topicId}"
                }
            }
        };

        // Construct the inspect job config using the actions.
        var inspectJob = new InspectJobConfig
        {
            StorageConfig = storageConfig,
            InspectConfig = inspectConfig,
            Actions = { actions }
        };

        // Issue Create Dlp Job Request.
        var request = new CreateDlpJobRequest
        {
            InspectJob = inspectJob,
            ParentAsLocationName = new LocationName(projectId, "global"),
        };

        // We keep the name of the job that we just created.
        var dlpJob = dlp.CreateDlpJob(request);
        var jobName = dlpJob.Name;

        // Listen to pub/sub for the job.
        var subscriptionName = new SubscriptionName(projectId, subId);
        var subscriber = await SubscriberClient.CreateAsync(
            subscriptionName);

        // SimpleSubscriber runs your message handle function on multiple threads to maximize throughput.
        await subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == jobName)
            {
                subscriber.StopAsync(cancel);
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        // Get the latest state of the job from the service.
        var resultJob = dlp.GetDlpJob(new GetDlpJobRequest
        {
            DlpJobName = DlpJobName.Parse(jobName)
        });

        // Parse the response and process results.
        System.Console.WriteLine($"Job status: {resultJob.State}");
        System.Console.WriteLine($"Job Name: {resultJob.Name}");
        var result = resultJob.InspectDetails.Result;
        foreach (var infoType in result.InfoTypeStats)
        {
            System.Console.WriteLine($"Info Type: {infoType.InfoType.Name}");
            System.Console.WriteLine($"Count: {infoType.Count}");
        }
        return resultJob;
    }
}

REST

Input JSON:

POST https://dlp.googleapis.com/v2/projects/[PROJECT-ID]/dlpJobs?key={YOUR_API_KEY}

{
  "inspectJob":{
    "storageConfig":{
      "bigQueryOptions":{
        "tableReference":{
          "projectId":"bigquery-public-data",
          "datasetId":"usa_names",
          "tableId":"usa_1910_current"
        },
        "rowsLimit":"1000",
        "sampleMethod":"RANDOM_START",
        "includedFields":[
          {
            "name":"name"
          }
        ]
      }
    },
    "inspectConfig":{
      "infoTypes":[
        {
          "name":"FIRST_NAME"
        }
      ],
      "includeQuote":true
    },
    "actions":[
      {
        "saveFindings":{
          "outputConfig":{
            "table":{
              "projectId":"[PROJECT-ID]",
              "datasetId":"testingdlp",
              "tableId":"bqsample3"
            },
            "outputSchema":"BASIC_COLUMNS"
          }
        }
      }
    ]
  }
}

Setelah mengirim input JSON dalam permintaan POST ke endpoint yang ditentukan, tugas Perlindungan Data Sensitif akan dibuat, dan API mengirimkan respons berikut.

Output JSON:

{
  "name": "projects/[PROJECT-ID]/dlpJobs/[JOB-ID]",
  "type": "INSPECT_JOB",
  "state": "PENDING",
  "inspectDetails": {
    "requestedOptions": {
      "snapshotInspectTemplate": {},
      "jobConfig": {
        "storageConfig": {
          "bigQueryOptions": {
            "tableReference": {
              "projectId": "bigquery-public-data",
              "datasetId": "usa_names",
              "tableId": "usa_1910_current"
            },
            "rowsLimit": "1000",
            "sampleMethod": "RANDOM_START",
            "includedFields": [
              {
                "name": "name"
              }
            ]
          }
        },
        "inspectConfig": {
          "infoTypes": [
            {
              "name": "FIRST_NAME"
            }
          ],
          "limits": {},
          "includeQuote": true
        },
        "actions": [
          {
            "saveFindings": {
              "outputConfig": {
                "table": {
                  "projectId": "[PROJECT-ID]",
                  "datasetId": "[DATASET-ID]",
                  "tableId": "bqsample"
                },
                "outputSchema": "BASIC_COLUMNS"
              }
            }
          }
        ]
      }
    },
    "result": {}
  },
  "createTime": "2022-11-04T18:53:48.350Z"
}

Setelah tugas inspeksi selesai berjalan dan hasilnya telah diproses oleh BigQuery, hasil pemindaian tersedia dalam tabel output BigQuery yang ditentukan. Untuk informasi selengkapnya tentang cara mengambil hasil pemeriksaan, lihat bagian berikutnya.

Mengambil hasil pemeriksaan

Anda dapat mengambil ringkasan DlpJob menggunakan metode projects.dlpJobs.get. DlpJob yang ditampilkan menyertakan objek InspectDataSourceDetails, yang berisi ringkasan konfigurasi tugas (RequestedOptions) dan ringkasan hasil tugas (Result). Ringkasan hasilnya mencakup:

  • processedBytes: Ukuran total dalam byte yang telah diproses.
  • totalEstimatedBytes: Perkiraan jumlah byte yang tersisa untuk diproses.
  • Objek InfoTypeStatistics: Statistik jumlah instance setiap infoType yang ditemukan selama tugas pemeriksaan.

Untuk hasil tugas pemeriksaan lengkap, Anda memiliki beberapa opsi. Bergantung pada Action yang Anda pilih, tugas pemeriksaan adalah:

  • Disimpan ke BigQuery (objek SaveFindings) dalam tabel yang ditentukan. Sebelum melihat atau menganalisis hasilnya, pastikan terlebih dahulu bahwa tugas telah selesai dengan menggunakan metode projects.dlpJobs.get, yang dijelaskan di bawah ini. Perlu diperhatikan bahwa Anda dapat menentukan skema untuk menyimpan temuan menggunakan objek OutputSchema.
  • Dipublikasikan ke topik Pub/Sub (objek PublishToPubSub). Topik harus telah memberikan hak akses publikasi ke akun layanan Perlindungan Data Sensitif yang menjalankan DlpJob yang mengirimkan notifikasi.
  • Dipublikasikan ke Security Command Center.
  • Dipublikasikan ke Data Catalog.
  • Dipublikasikan ke Cloud Monitoring.

Untuk membantu menyaring sejumlah besar data yang dihasilkan oleh Perlindungan Data Sensitif, Anda dapat menggunakan alat BigQuery bawaan untuk menjalankan analisis atau alat SQL yang lengkap seperti Looker Studio untuk membuat laporan. Untuk informasi selengkapnya, lihat Menganalisis dan melaporkan temuan Perlindungan Data Sensitif. Untuk beberapa contoh kueri, baca Menemukan kueri di BigQuery.

Mengirim permintaan pemeriksaan repositori penyimpanan ke Perlindungan Data Sensitif akan membuat dan menjalankan instance objek DlpJob sebagai respons. Tugas ini dapat memerlukan waktu detik, menit, atau jam untuk dijalankan, bergantung pada ukuran data dan konfigurasi yang telah Anda tentukan. Memilih untuk memublikasikan ke topik Pub/Sub (dengan menentukan PublishToPubSub di Action) akan otomatis mengirimkan notifikasi ke topik tersebut dengan nama yang ditentukan saat status tugas berubah. Nama topik Pub/Sub ditentukan dalam bentuk projects/[PROJECT-ID]/topics/[PUBSUB-TOPIC-NAME].

Anda memiliki kontrol penuh atas tugas yang Anda buat, termasuk metode pengelolaan berikut:

  • Metode projects.dlpJobs.cancel: Menghentikan tugas yang sedang berlangsung. Server melakukan upaya terbaik untuk membatalkan tugas, tetapi keberhasilan tidak dijamin.Tugas dan konfigurasinya akan tetap ada hingga Anda menghapusnya (dengan file .
  • Metode projects.dlpJobs.delete: Menghapus tugas dan konfigurasinya.
  • Metode projects.dlpJobs.get: Mengambil satu tugas dan menampilkan status, konfigurasinya, dan, jika tugas selesai, hasil ringkasan.
  • Metode projects.dlpJobs.list: Mengambil daftar semua tugas, dan menyertakan kemampuan untuk memfilter hasil.

Langkah berikutnya