데이터 세트의 l-다양성 계산

l-다양성은 데이터 세트의 속성이자 k-익명성의 확장으로, 해당 값이 발생하는 각 열에서 민감한 값의 다양성을 측정합니다. 동일한 유사 식별자를 가진 모든 행 집합에서 각 민감한 속성의 고유 값이 최소 l개 있는 경우 데이터 세트는 l-다양성을 가집니다.

하나 이상의 열 또는 필드를 기준으로 데이터 세트의 l-다양성 값을 계산할 수 있습니다. 이 주제에서는 Sensitive Data Protection을 사용하여 데이터 세트의 l-다양성 값을 계산하는 방법을 보여줍니다. 계속 진행하기 전에 l-다양성 또는 일반 위험 분석에 대한 자세한 내용은 위험 분석 개념 주제를 참조하세요.

시작하기 전에

계속하기 전에 다음 작업을 완료했는지 확인하세요.

  1. Google 계정으로 로그인합니다.
  2. Google Cloud 콘솔의 프로젝트 선택기 페이지에서 Google Cloud 프로젝트를 선택하거나 만듭니다.
  3. 프로젝트 선택기로 이동
  4. Google Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다. 프로젝트에 결제가 사용 설정되어 있는지 확인하는 방법을 알아보세요.
  5. Sensitive Data Protection을 사용 설정합니다.
  6. Sensitive Data Protection 사용 설정

  7. 분석할 BigQuery 데이터 세트를 선택합니다. Sensitive Data Protection은 BigQuery 테이블을 스캔하여 l-다양성 측정항목을 계산합니다.
  8. 데이터 세트에서 민감한 필드 식별자(해당하는 경우)와 하나 이상의 유사 식별자를 확인합니다. 자세한 내용은 위험 분석 용어 및 기법을 참조하세요.

I-다양성 계산

Sensitive Data Protection은 위험 분석 작업이 실행될 때마다 위험 분석을 수행합니다. 먼저 Google Cloud 콘솔을 사용하거나 DLP API 요청을 전송하거나 Sensitive Data Protection 클라이언트 라이브러리를 사용하여 작업을 만들어야 합니다.

콘솔

  1. Google Cloud 콘솔에서 위험 분석 만들기 페이지로 이동합니다.

    위험 분석 만들기로 이동

  2. 입력 데이터 선택 섹션에서 테이블이 포함된 프로젝트의 프로젝트 ID, 테이블의 데이터 세트 ID, 테이블 이름을 입력하여 스캔하도록 BigQuery 테이블을 지정하세요.

  3. 계산할 개인정보 보호 측정항목에서 l-다양성을 선택합니다.

  4. 작업 ID 섹션에서 작업에 커스텀 식별자를 제공하고 Sensitive Data Protection이 데이터를 처리할 리소스 위치를 선택할 수 있습니다. 완료되었으면 계속을 클릭합니다.

  5. 필드 정의 섹션에서 l-다양성 위험 작업의 민감한 필드 및 유사 식별자를 지정합니다. Sensitive Data Protection은 이전 단계에서 지정한 BigQuery 테이블의 메타데이터에 액세스하고 필드 목록을 채우려고 시도합니다.

    1. 적절한 체크박스를 선택하여 필드를 민감한 필드(S) 또는 유사 식별자 (QI)로 지정합니다. 민감한 필드 1개 및 1개 이상의 유사 식별자를 선택해야 합니다.
    2. Sensitive Data Protection에서 필드를 채울 수 없으면 필드 이름 입력을 클릭하여 하나 이상의 필드를 직접 입력하고 각 필드를 민감한 식별자 또는 유사 식별자로 설정합니다. 완료되었으면 계속을 클릭합니다.
  6. 작업 추가 섹션에서 위험 작업이 완료되면 수행할 작업(선택사항)을 추가할 수 있습니다. 사용 가능한 옵션은 다음과 같습니다.

    • BigQuery에 저장: 위험 분석 스캔의 결과를 BigQuery 테이블에 저장합니다.
    • Pub/Sub에 게시: Pub/Sub 주제에 알림을 게시합니다.

    • 이메일로 알림: 결과가 포함된 이메일을 전송합니다. 완료되면 만들기를 클릭합니다.

l-다양성 위험 분석 작업이 즉시 시작됩니다.

C#

Sensitive Data Protection의 클라이언트 라이브러리를 설치하고 사용하는 방법은 Sensitive Data Protection 클라이언트 라이브러리를 참조하세요.

Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.Action.Types;
using static Google.Cloud.Dlp.V2.PrivacyMetric.Types;

public class RiskAnalysisCreateLDiversity
{
    public static object LDiversity(
        string callingProjectId,
        string tableProjectId,
        string datasetId,
        string tableId,
        string topicId,
        string subscriptionId,
        IEnumerable<FieldId> quasiIds,
        string sensitiveAttribute)
    {
        var dlp = DlpServiceClient.Create();

        // Construct + submit the job
        var ldiversityConfig = new LDiversityConfig
        {
            SensitiveAttribute = new FieldId { Name = sensitiveAttribute },
            QuasiIds = { quasiIds }
        };

        var config = new RiskAnalysisJobConfig
        {
            PrivacyMetric = new PrivacyMetric
            {
                LDiversityConfig = ldiversityConfig
            },
            SourceTable = new BigQueryTable
            {
                ProjectId = tableProjectId,
                DatasetId = datasetId,
                TableId = tableId
            },
            Actions =
            {
                new Google.Cloud.Dlp.V2.Action
                {
                    PubSub = new PublishToPubSub
                    {
                        Topic = $"projects/{callingProjectId}/topics/{topicId}"
                    }
                }
            }
        };

        var submittedJob = dlp.CreateDlpJob(
            new CreateDlpJobRequest
            {
                ParentAsProjectName = new ProjectName(callingProjectId),
                RiskJob = config
            });

        // Listen to pub/sub for the job
        var subscriptionName = new SubscriptionName(callingProjectId, subscriptionId);
        var subscriber = SubscriberClient.CreateAsync(subscriptionName).Result;

        // SimpleSubscriber runs your message handle function on multiple
        // threads to maximize throughput.
        var done = new ManualResetEventSlim(false);
        subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == submittedJob.Name)
            {
                Thread.Sleep(500); // Wait for DLP API results to become consistent
                done.Set();
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        done.Wait(TimeSpan.FromMinutes(10)); // 10 minute timeout; may not work for large jobs
        subscriber.StopAsync(CancellationToken.None).Wait();

        // Process results
        var resultJob = dlp.GetDlpJob(
            new GetDlpJobRequest
            {
                DlpJobName = DlpJobName.Parse(submittedJob.Name)
            });

        var result = resultJob.RiskDetails.LDiversityResult;

        for (var bucketIdx = 0; bucketIdx < result.SensitiveValueFrequencyHistogramBuckets.Count; bucketIdx++)
        {
            var bucket = result.SensitiveValueFrequencyHistogramBuckets[bucketIdx];
            Console.WriteLine($"Bucket {bucketIdx}");
            Console.WriteLine($"  Bucket size range: [{bucket.SensitiveValueFrequencyLowerBound}, {bucket.SensitiveValueFrequencyUpperBound}].");
            Console.WriteLine($"  {bucket.BucketSize} unique value(s) total.");

            foreach (var bucketValue in bucket.BucketValues)
            {
                // 'UnpackValue(x)' is a prettier version of 'x.toString()'
                Console.WriteLine($"    Quasi-ID values: [{String.Join(',', bucketValue.QuasiIdsValues.Select(x => UnpackValue(x)))}]");
                Console.WriteLine($"    Class size: {bucketValue.EquivalenceClassSize}");

                foreach (var topValue in bucketValue.TopSensitiveValues)
                {
                    Console.WriteLine($"    Sensitive value {UnpackValue(topValue.Value)} occurs {topValue.Count} time(s).");
                }
            }
        }

        return result;
    }

    public static string UnpackValue(Value protoValue)
    {
        var jsonValue = JsonConvert.DeserializeObject<Dictionary<string, object>>(protoValue.ToString());
        return jsonValue.Values.ElementAt(0).ToString();
    }
}

Go

민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.

Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// riskLDiversity computes the L Diversity of the given columns.
func riskLDiversity(w io.Writer, projectID, dataProject, pubSubTopic, pubSubSub, datasetID, tableID, sensitiveAttribute string, columnNames ...string) error {
	// projectID := "my-project-id"
	// dataProject := "bigquery-public-data"
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// datasetID := "nhtsa_traffic_fatalities"
	// tableID := "accident_2015"
	// sensitiveAttribute := "city"
	// columnNames := "state_number", "county"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	topicExists, err := t.Exists(ctx)
	if err != nil {
		return err
	}
	if !topicExists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	subExists, err := s.Exists(ctx)
	if err != nil {
		return err
	}
	if !subExists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Build the QuasiID slice.
	var q []*dlppb.FieldId
	for _, c := range columnNames {
		q = append(q, &dlppb.FieldId{Name: c})
	}

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_RiskJob{
			RiskJob: &dlppb.RiskAnalysisJobConfig{
				// PrivacyMetric configures what to compute.
				PrivacyMetric: &dlppb.PrivacyMetric{
					Type: &dlppb.PrivacyMetric_LDiversityConfig_{
						LDiversityConfig: &dlppb.PrivacyMetric_LDiversityConfig{
							QuasiIds: q,
							SensitiveAttribute: &dlppb.FieldId{
								Name: sensitiveAttribute,
							},
						},
					},
				},
				// SourceTable describes where to find the data.
				SourceTable: &dlppb.BigQueryTable{
					ProjectId: dataProject,
					DatasetId: datasetID,
					TableId:   tableID,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the risk job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())
	// Wait for the risk job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()
		time.Sleep(500 * time.Millisecond)
		j, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "GetDlpJob: %v", err)
			return
		}
		h := j.GetRiskDetails().GetLDiversityResult().GetSensitiveValueFrequencyHistogramBuckets()
		for i, b := range h {
			fmt.Fprintf(w, "Histogram bucket %v\n", i)
			fmt.Fprintf(w, "  Size range: [%v,%v]\n", b.GetSensitiveValueFrequencyLowerBound(), b.GetSensitiveValueFrequencyUpperBound())
			fmt.Fprintf(w, "  %v unique values total\n", b.GetBucketSize())
			for _, v := range b.GetBucketValues() {
				var qvs []string
				for _, qv := range v.GetQuasiIdsValues() {
					qvs = append(qvs, qv.String())
				}
				fmt.Fprintf(w, "    QuasiID values: %s\n", strings.Join(qvs, ", "))
				fmt.Fprintf(w, "    Class size: %v\n", v.GetEquivalenceClassSize())
				for _, sv := range v.GetTopSensitiveValues() {
					fmt.Fprintf(w, "    Sensitive value %v occurs %v times\n", sv.GetValue(), sv.GetCount())
				}
			}
		}
		// Stop listening for more messages.
		cancel()
	})
	if err != nil {
		return fmt.Errorf("Recieve: %w", err)
	}
	return nil
}

Java

민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.

Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.dlp.v2.DlpServiceSettings;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.Action.PublishToPubSub;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.LDiversityResult;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.LDiversityResult.LDiversityEquivalenceClass;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.LDiversityResult.LDiversityHistogramBucket;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PrivacyMetric;
import com.google.privacy.dlp.v2.PrivacyMetric.LDiversityConfig;
import com.google.privacy.dlp.v2.RiskAnalysisJobConfig;
import com.google.privacy.dlp.v2.Value;
import com.google.privacy.dlp.v2.ValueFrequency;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import org.threeten.bp.Duration;

@SuppressWarnings("checkstyle:AbbreviationAsWordInName")
class RiskAnalysisLDiversity {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String datasetId = "your-bigquery-dataset-id";
    String tableId = "your-bigquery-table-id";
    String topicId = "pub-sub-topic";
    String subscriptionId = "pub-sub-subscription";
    calculateLDiversity(projectId, datasetId, tableId, topicId, subscriptionId);
  }

  public static void calculateLDiversity(
      String projectId, String datasetId, String tableId, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    DlpServiceSettings.Builder dlpServiceSettingsBuilder = DlpServiceSettings.newBuilder();
    dlpServiceSettingsBuilder
        .getDlpJobSettings()
        .setRetrySettings(
            dlpServiceSettingsBuilder
                .getDlpJobSettings()
                .getRetrySettings()
                .toBuilder()
                .setTotalTimeout(Duration.ofSeconds(600))
                .build());
    try (DlpServiceClient dlpServiceClient =
        DlpServiceClient.create(dlpServiceSettingsBuilder.build())) {
      // Specify the BigQuery table to analyze
      BigQueryTable bigQueryTable =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(datasetId)
              .setTableId(tableId)
              .build();

      // These values represent the column names of quasi-identifiers to analyze
      List<String> quasiIds = Arrays.asList("Age", "Mystery");

      // This value represents the column name to compare the quasi-identifiers against
      String sensitiveAttribute = "Name";

      // Configure the privacy metric for the job
      FieldId sensitiveAttributeField = FieldId.newBuilder().setName(sensitiveAttribute).build();
      List<FieldId> quasiIdFields =
          quasiIds.stream()
              .map(columnName -> FieldId.newBuilder().setName(columnName).build())
              .collect(Collectors.toList());
      LDiversityConfig ldiversityConfig =
          LDiversityConfig.newBuilder()
              .addAllQuasiIds(quasiIdFields)
              .setSensitiveAttribute(sensitiveAttributeField)
              .build();
      PrivacyMetric privacyMetric =
          PrivacyMetric.newBuilder().setLDiversityConfig(ldiversityConfig).build();

      // Create action to publish job status notifications over Google Cloud Pub/
      ProjectTopicName topicName = ProjectTopicName.of(projectId, topicId);
      PublishToPubSub publishToPubSub =
          PublishToPubSub.newBuilder().setTopic(topicName.toString()).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the risk analysis job to perform
      RiskAnalysisJobConfig riskAnalysisJobConfig =
          RiskAnalysisJobConfig.newBuilder()
              .setSourceTable(bigQueryTable)
              .setPrivacyMetric(privacyMetric)
              .addActions(action)
              .build();

      // Build the request to be sent by the client
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setRiskJob(riskAnalysisJobConfig)
              .build();

      // Send the request to the API using the client
      DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Build a request to get the completed job
      GetDlpJobRequest getDlpJobRequest =
          GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();

      // Retrieve completed job status
      DlpJob completedJob = dlpServiceClient.getDlpJob(getDlpJobRequest);
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());

      // Get the result and parse through and process the information
      LDiversityResult ldiversityResult = completedJob.getRiskDetails().getLDiversityResult();
      List<LDiversityHistogramBucket> histogramBucketList =
          ldiversityResult.getSensitiveValueFrequencyHistogramBucketsList();
      for (LDiversityHistogramBucket result : histogramBucketList) {
        for (LDiversityEquivalenceClass bucket : result.getBucketValuesList()) {
          List<String> quasiIdValues =
              bucket.getQuasiIdsValuesList().stream()
                  .map(Value::toString)
                  .collect(Collectors.toList());

          System.out.println("\tQuasi-ID values: " + String.join(", ", quasiIdValues));
          System.out.println("\tClass size: " + bucket.getEquivalenceClassSize());

          for (ValueFrequency valueFrequency : bucket.getTopSensitiveValuesList()) {
            System.out.printf(
                "\t\tSensitive value %s occurs %d time(s).\n",
                valueFrequency.getValue().toString(), valueFrequency.getCount());
          }
        }
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.

Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const tableProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// The column to measure l-diversity relative to, e.g. 'firstName'
// const sensitiveAttribute = 'name';

// A set of columns that form a composite key ('quasi-identifiers')
// const quasiIds = [{ name: 'age' }, { name: 'city' }];

async function lDiversityAnalysis() {
  const sourceTable = {
    projectId: tableProjectId,
    datasetId: datasetId,
    tableId: tableId,
  };

  // Construct request for creating a risk analysis job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    riskJob: {
      privacyMetric: {
        lDiversityConfig: {
          quasiIds: quasiIds,
          sensitiveAttribute: {
            name: sensitiveAttribute,
          },
        },
      },
      sourceTable: sourceTable,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Create helper function for unpacking values
  const getValue = obj => obj[Object.keys(obj)[0]];

  // Run risk analysis job
  const [topicResponse] = await pubsub.topic(topicId).get();
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  console.log(`Job created. Job name: ${jobName}`);
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  setTimeout(() => {
    console.log(' Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  const histogramBuckets =
    job.riskDetails.lDiversityResult.sensitiveValueFrequencyHistogramBuckets;

  histogramBuckets.forEach((histogramBucket, histogramBucketIdx) => {
    console.log(`Bucket ${histogramBucketIdx}:`);

    console.log(
      `Bucket size range: [${histogramBucket.sensitiveValueFrequencyLowerBound}, ${histogramBucket.sensitiveValueFrequencyUpperBound}]`
    );
    histogramBucket.bucketValues.forEach(valueBucket => {
      const quasiIdValues = valueBucket.quasiIdsValues
        .map(getValue)
        .join(', ');
      console.log(`  Quasi-ID values: {${quasiIdValues}}`);
      console.log(`  Class size: ${valueBucket.equivalenceClassSize}`);
      valueBucket.topSensitiveValues.forEach(valueObj => {
        console.log(
          `    Sensitive value ${getValue(valueObj.value)} occurs ${
            valueObj.count
          } time(s).`
        );
      });
    });
  });
}

await lDiversityAnalysis();

PHP

민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.

Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\PrivacyMetric;
use Google\Cloud\Dlp\V2\PrivacyMetric\LDiversityConfig;
use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Computes the l-diversity of a column set in a Google BigQuery table.
 *
 * @param string    $callingProjectId    The project ID to run the API call under
 * @param string    $dataProjectId       The project ID containing the target Datastore
 * @param string    $topicId             The name of the Pub/Sub topic to notify once the job completes
 * @param string    $subscriptionId      The name of the Pub/Sub subscription to use when listening for job
 * @param string    $datasetId           The ID of the dataset to inspect
 * @param string    $tableId             The ID of the table to inspect
 * @param string    $sensitiveAttribute  The column to measure l-diversity relative to, e.g. "firstName"
 * @param string[]  $quasiIdNames        Array columns that form a composite key (quasi-identifiers)
 */
function l_diversity(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $datasetId,
    string $tableId,
    string $sensitiveAttribute,
    array $quasiIdNames
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Construct risk analysis config
    $quasiIds = array_map(
        function ($id) {
            return (new FieldId())->setName($id);
        },
        $quasiIdNames
    );

    $sensitiveField = (new FieldId())
        ->setName($sensitiveAttribute);

    $statsConfig = (new LDiversityConfig())
        ->setQuasiIds($quasiIds)
        ->setSensitiveAttribute($sensitiveField);

    $privacyMetric = (new PrivacyMetric())
        ->setLDiversityConfig($statsConfig);

    // Construct items to be analyzed
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($dataProjectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct risk analysis job config to run
    $riskJob = (new RiskAnalysisJobConfig())
        ->setPrivacyMetric($privacyMetric)
        ->setSourceTable($bigqueryTable)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setRiskJob($riskJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $histBuckets = $job->getRiskDetails()->getLDiversityResult()->getSensitiveValueFrequencyHistogramBuckets();

            foreach ($histBuckets as $bucketIndex => $histBucket) {
                // Print bucket stats
                printf('Bucket %s:' . PHP_EOL, $bucketIndex);
                printf(
                    '  Bucket size range: [%s, %s]' . PHP_EOL,
                    $histBucket->getSensitiveValueFrequencyLowerBound(),
                    $histBucket->getSensitiveValueFrequencyUpperBound()
                );

                // Print bucket values
                foreach ($histBucket->getBucketValues() as $percent => $valueBucket) {
                    printf(
                        '  Class size: %s' . PHP_EOL,
                        $valueBucket->getEquivalenceClassSize()
                    );

                    // Pretty-print quasi-ID values
                    print('  Quasi-ID values:' . PHP_EOL);
                    foreach ($valueBucket->getQuasiIdsValues() as $index => $value) {
                        print('    ' . $value->serializeToJsonString() . PHP_EOL);
                    }

                    // Pretty-print sensitive values
                    $topValues = $valueBucket->getTopSensitiveValues();
                    foreach ($topValues as $topValue) {
                        printf(
                            '  Sensitive value %s occurs %s time(s).' . PHP_EOL,
                            $topValue->getValue()->serializeToJsonString(),
                            $topValue->getCount()
                        );
                    }
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

민감한 정보 보호의 클라이언트 라이브러리를 설치하고 사용하는 방법은 민감한 정보 보호 클라이언트 라이브러리를 참조하세요.

Sensitive Data Protection에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import concurrent.futures
from typing import List

import google.cloud.dlp
from google.cloud.dlp_v2 import types
import google.cloud.pubsub


def l_diversity_analysis(
    project: str,
    table_project_id: str,
    dataset_id: str,
    table_id: str,
    topic_id: str,
    subscription_id: str,
    sensitive_attribute: str,
    quasi_ids: List[str],
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to compute the l-diversity of a
        column set in a Google BigQuery table.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        table_project_id: The Google Cloud project id where the BigQuery table
            is stored.
        dataset_id: The id of the dataset to inspect.
        table_id: The id of the table to inspect.
        topic_id: The name of the Pub/Sub topic to notify once the job
            completes.
        subscription_id: The name of the Pub/Sub subscription to use when
            listening for job completion notifications.
        sensitive_attribute: The column to measure l-diversity relative to.
        quasi_ids: A set of columns that form a composite key.
        timeout: The number of seconds to wait for a response from the API.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Create helper function for unpacking values
    def get_values(obj: types.Value) -> int:
        return int(obj.integer_value)

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Location info of the BigQuery table.
    source_table = {
        "project_id": table_project_id,
        "dataset_id": dataset_id,
        "table_id": table_id,
    }

    # Convert quasi id list to Protobuf type
    def map_fields(field: str) -> dict:
        return {"name": field}

    quasi_ids = map(map_fields, quasi_ids)

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Configure risk analysis job
    # Give the name of the numeric column to compute risk metrics for
    risk_job = {
        "privacy_metric": {
            "l_diversity_config": {
                "quasi_ids": quasi_ids,
                "sensitive_attribute": {"name": sensitive_attribute},
            }
        },
        "source_table": source_table,
        "actions": actions,
    }

    # Call API to start risk analysis job
    operation = dlp.create_dlp_job(request={"parent": parent, "risk_job": risk_job})

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        if message.attributes["DlpJobName"] == operation.name:
            # This is the message we're looking for, so acknowledge it.
            message.ack()

            # Now that the job is done, fetch the results and print them.
            job = dlp.get_dlp_job(request={"name": operation.name})
            print(f"Job name: {job.name}")
            histogram_buckets = (
                job.risk_details.l_diversity_result.sensitive_value_frequency_histogram_buckets  # noqa: E501
            )
            # Print bucket stats
            for i, bucket in enumerate(histogram_buckets):
                print(f"Bucket {i}:")
                print(
                    "   Bucket size range: [{}, {}]".format(
                        bucket.sensitive_value_frequency_lower_bound,
                        bucket.sensitive_value_frequency_upper_bound,
                    )
                )
                for value_bucket in bucket.bucket_values:
                    print(
                        "   Quasi-ID values: {}".format(
                            map(get_values, value_bucket.quasi_ids_values)
                        )
                    )
                    print(f"   Class size: {value_bucket.equivalence_class_size}")
                    for value in value_bucket.top_sensitive_values:
                        print(
                            "   Sensitive value {} occurs {} time(s)".format(
                                value.value, value.count
                            )
                        )
            subscription.set_result(None)
        else:
            # This is not the message we're looking for.
            message.drop()

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)
    subscription = subscriber.subscribe(subscription_path, callback)

    try:
        subscription.result(timeout=timeout)
    except concurrent.futures.TimeoutError:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )
        subscription.close()

REST

새로운 위험 분석 작업을 실행하여 l-다양성을 계산하려면 projects.dlpJobs 리소스에 요청을 보냅니다. 여기서 PROJECT_ID프로젝트 식별자를 나타냅니다.

https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs

요청에는 다음 요소로 구성된 RiskAnalysisJobConfig 객체가 포함됩니다.

  • PrivacyMetric 객체. 여기에서 LDiversityConfig 객체를 포함하여 l-다양성을 계산하도록 지정합니다.

  • BigQueryTable 객체. 다음을 모두 포함하여 스캔할 BigQuery 테이블을 지정합니다.

    • projectId: 테이블이 포함된 프로젝트의 프로젝트 ID
    • datasetId: 테이블의 데이터 세트 ID
    • tableId: 테이블의 이름
  • 작업 완료 시 실행할 작업을 나타내는 하나 이상의 Action 객체 집합(주어진 순서에 따름). 각 Action 객체는 다음 작업 중 하나를 포함할 수 있습니다.

    LDiversityConfig 객체 내에서 다음을 지정합니다.

    • quasiIds[]: l-다양성 계산에 정의된 등가 클래스를 나타내는 유사 식별자 집합(FieldId 객체). KAnonymityConfig와 마찬가지로 여러 필드를 지정하는 경우 하나의 복합 키로 간주됩니다.
    • sensitiveAttribute: l-다양성 값 계산에 필요한 민감한 필드(FieldId 객체)

DLP API에 요청을 전송하면 위험 분석 작업이 시작됩니다.

완료된 위험 분석 작업 나열

현재 프로젝트에서 실행된 위험 분석 작업의 목록을 볼 수 있습니다.

콘솔

Google Cloud 콘솔에서 실행 중이고 이전에 실행된 위험 분석 작업을 나열하려면 다음을 수행합니다.

  1. Google Cloud 콘솔에서 Sensitive Data Protection을 엽니다.

    Sensitive Data Protection로 이동

  2. 페이지 상단의 작업 및 작업 트리거 탭을 클릭합니다.

  3. 위험 작업 탭을 클릭합니다.

위험 작업 목록이 표시됩니다.

프로토콜

실행 중이고 이전에 실행된 위험 분석 작업을 나열하려면 projects.dlpJobs 리소스에 GET 요청을 보냅니다. 작업 유형 필터(?type=RISK_ANALYSIS_JOB)를 추가하면 응답의 범위를 위험 분석 작업으로 좁힙니다.

https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs?type=RISK_ANALYSIS_JOB

수신하는 응답에는 현재 및 이전 위험 분석 작업의 JSON 표현이 포함됩니다.

l-다양성 작업 결과 보기

Google Cloud 콘솔의 Sensitive Data Protection은 완료된 l-다양성 작업에 사용되는 기본 제공 시각화 기능을 제공합니다. 이전 섹션의 안내를 따른 후 위험 분석 작업 목록에서 결과를 확인할 작업을 선택합니다. 작업이 성공적으로 실행되었다고 가정하면 위험 분석 세부정보 페이지 상단에 다음과 같이 표시됩니다.

페이지 상단에 작업 ID를 포함한 l-다양성 위험 작업에 대한 정보가 나와 있으며 컨테이너에는 리소스 위치가 표시됩니다.

l-다양성 계산 결과를 보려면 L-다양성 탭을 클릭하세요. 위험 분석 작업의 구성을 보려면 구성 탭을 클릭합니다.

L-다양성 탭에는 먼저 민감한 값과 l-다양성을 계산하는 데 사용되는 유사 식별자가 나열됩니다.

위험 차트

재식별 위험 차트의 y축은 고유 행과 고유 유사 식별자 조합에 대한 데이터 손실의 잠재적 비율이며 x축은 l-다양성 값입니다. 차트의 색상도 위험 가능성도 나타냅니다. 파란색이 어두울수록 위험이 높으며 밝을 수록 위험이 적습니다.

l-다양성 값이 높을수록 값의 다양성이 줄어들어 데이터 세트가 재식별화되고 보안이 향상될 수 있습니다. 그러나 l-다양성 값을 높이려면 총 행의 높은 비율과 높은 고유 유사 식별자 조합을 삭제해야 할 수 있으며 이는 데이터의 유용성을 낮춥니다. 특정 l-다양성 값의 특정 백분율 손실 값을 보려면 차트 위로 마우스를 가져가세요. 스크린샷과 같이 차트에 도움말이 표시됩니다.

특정 l-다양성 값에 대한 자세한 내용을 보려면 해당 데이터 포인트를 클릭합니다. 차트 아래에 자세한 설명이 표시되고 샘플 데이터 테이블이 페이지 아래쪽에 표시됩니다.

위험 샘플 데이터 표

위험 작업 결과 페이지의 두 번째 구성요소는 샘플 데이터 테이블입니다. 지정된 대상 l-다양성 값에 대한 유사 식별자 조합을 표시합니다.

테이블의 첫 번째 열에는 k-익명성 값이 나열됩니다. l-다양성 값을 클릭하면 값을 얻기 위해 삭제되어야 할 해당 샘플 데이터가 표시됩니다.

두 번째 열은 선택된 l-다양성 값을 얻기 위해 고유한 행 및 유사 식별자 조합의 잠재적 데이터 손실과 최소 l-다양성이 있는 그룹 수와 총 레코드 수를 표시합니다.

마지막 열에는 유사 식별자 조합을 공유하는 그룹의 샘플과 해당 조합에 존재하는 레코드 수가 표시됩니다.

REST를 사용하여 작업 세부정보 검색

REST API를 사용하여 l-다양성 위험 분석 작업의 결과를 검색하려면 다음 GET 요청을 projects.dlpJobs 리소스에 보냅니다. PROJECT_ID를 프로젝트 ID로 바꾸고 JOB_ID를 결과를 가져올 작업 식별자로 바꿉니다. 작업 ID는 작업 시작 시 반환되었으며 모든 작업을 나열하여 검색할 수도 있습니다.

GET https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs/JOB_ID

요청은 작업 인스턴스가 포함된 JSON 객체를 반환합니다. 분석 결과는 AnalyzeDataSourceRiskDetails 객체의 "riskDetails" 키 내에 있습니다. 자세한 내용은 DlpJob 리소스의 API 참조를 확인하세요.

다음 단계

  • 데이터 세트의 k-익명성 값을 계산하는 방법 알아보기
  • 데이터 세트의 k-맵 값을 계산하는 방법 알아보기
  • 데이터 세트의 δ-존재 값을 계산하는 방법 알아보기