ModelServiceClient(*, credentials: Optional[google.auth.credentials.Credentials] = None, transport: Optional[Union[str, google.cloud.retail_v2alpha.services.model_service.transports.base.ModelServiceTransport]] = None, client_options: Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)
Service for performing CRUD operations on models. Recommendation models contain all the metadata necessary to generate a set of models for the Predict() api. A model is queried indirectly via a ServingConfig, which associates a model with a given Placement (e.g. Frequently Bought Together on Home Page).
This service allows customers to e.g.:
- Initiate training of a model.
- Pause training of an existing model.
- List all the available models along with their metadata.
- Control their tuning schedule.
Properties
transport
Returns the transport used by the client instance.
Returns | |
---|---|
Type | Description |
ModelServiceTransport | The transport used by the client instance. |
Methods
ModelServiceClient
ModelServiceClient(*, credentials: Optional[google.auth.credentials.Credentials] = None, transport: Optional[Union[str, google.cloud.retail_v2alpha.services.model_service.transports.base.ModelServiceTransport]] = None, client_options: Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)
Instantiates the model service client.
Parameters | |
---|---|
Name | Description |
credentials |
Optional[google.auth.credentials.Credentials]
The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. |
transport |
Union[str, ModelServiceTransport]
The transport to use. If set to None, a transport is chosen automatically. |
client_options |
google.api_core.client_options.ClientOptions
Custom options for the client. It won't take effect if a |
client_info |
google.api_core.gapic_v1.client_info.ClientInfo
The client info used to send a user-agent string along with API requests. If |
Exceptions | |
---|---|
Type | Description |
google.auth.exceptions.MutualTLSChannelError | If mutual TLS transport creation failed for any reason. |
__exit__
__exit__(type, value, traceback)
Releases underlying transport's resources.
catalog_path
catalog_path(project: str, location: str, catalog: str)
Returns a fully-qualified catalog string.
common_billing_account_path
common_billing_account_path(billing_account: str)
Returns a fully-qualified billing_account string.
common_folder_path
common_folder_path(folder: str)
Returns a fully-qualified folder string.
common_location_path
common_location_path(project: str, location: str)
Returns a fully-qualified location string.
common_organization_path
common_organization_path(organization: str)
Returns a fully-qualified organization string.
common_project_path
common_project_path(project: str)
Returns a fully-qualified project string.
create_model
create_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.CreateModelRequest, dict]] = None, *, parent: Optional[str] = None, model: Optional[google.cloud.retail_v2alpha.types.model.Model] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Creates a new model.
# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in:
# https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import retail_v2alpha
def sample_create_model():
# Create a client
client = retail_v2alpha.ModelServiceClient()
# Initialize request argument(s)
model = retail_v2alpha.Model()
model.page_optimization_config.page_optimization_event_type = "page_optimization_event_type_value"
model.page_optimization_config.panels.candidates.serving_config_id = "serving_config_id_value"
model.page_optimization_config.panels.default_candidate.serving_config_id = "serving_config_id_value"
model.name = "name_value"
model.display_name = "display_name_value"
model.type_ = "type__value"
request = retail_v2alpha.CreateModelRequest(
parent="parent_value",
model=model,
)
# Make the request
operation = client.create_model(request=request)
print("Waiting for operation to complete...")
response = operation.result()
# Handle the response
print(response)
Parameters | |
---|---|
Name | Description |
request |
Union[google.cloud.retail_v2alpha.types.CreateModelRequest, dict]
The request object. Request for creating a model. |
parent |
str
Required. The parent resource under which to create the model. Format: projects/{project_number}/locations/{location_id}/catalogs/{catalog_id} This corresponds to the |
model |
google.cloud.retail_v2alpha.types.Model
Required. The payload of the [Model] to create. This corresponds to the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Returns | |
---|---|
Type | Description |
google.api_core.operation.Operation | An object representing a long-running operation. The result type for the operation will be Model Metadata that describes the training and serving parameters of a Model. A Model can be associated with a ServingConfig and then queried through the Predict api. |
delete_model
delete_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.DeleteModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Deletes an existing model.
# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in:
# https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import retail_v2alpha
def sample_delete_model():
# Create a client
client = retail_v2alpha.ModelServiceClient()
# Initialize request argument(s)
request = retail_v2alpha.DeleteModelRequest(
name="name_value",
)
# Make the request
client.delete_model(request=request)
Parameters | |
---|---|
Name | Description |
request |
Union[google.cloud.retail_v2alpha.types.DeleteModelRequest, dict]
The request object. Request for deleting a model. |
name |
str
Required. The resource name of the [Model] to delete. Format: projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id} This corresponds to the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
from_service_account_file
from_service_account_file(filename: str, *args, **kwargs)
Creates an instance of this client using the provided credentials file.
Parameter | |
---|---|
Name | Description |
filename |
str
The path to the service account private key json file. |
Returns | |
---|---|
Type | Description |
ModelServiceClient | The constructed client. |
from_service_account_info
from_service_account_info(info: dict, *args, **kwargs)
Creates an instance of this client using the provided credentials info.
Parameter | |
---|---|
Name | Description |
info |
dict
The service account private key info. |
Returns | |
---|---|
Type | Description |
ModelServiceClient | The constructed client. |
from_service_account_json
from_service_account_json(filename: str, *args, **kwargs)
Creates an instance of this client using the provided credentials file.
Parameter | |
---|---|
Name | Description |
filename |
str
The path to the service account private key json file. |
Returns | |
---|---|
Type | Description |
ModelServiceClient | The constructed client. |
get_mtls_endpoint_and_cert_source
get_mtls_endpoint_and_cert_source(
client_options: Optional[google.api_core.client_options.ClientOptions] = None,
)
Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order:
(1) if GOOGLE_API_USE_CLIENT_CERTIFICATE
environment variable is not "true", the
client cert source is None.
(2) if client_options.client_cert_source
is provided, use the provided one; if the
default client cert source exists, use the default one; otherwise the client cert
source is None.
The API endpoint is determined in the following order:
(1) if client_options.api_endpoint
if provided, use the provided one.
(2) if GOOGLE_API_USE_CLIENT_CERTIFICATE
environment variable is "always", use the
default mTLS endpoint; if the environment variabel is "never", use the default API
endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise
use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
Parameter | |
---|---|
Name | Description |
client_options |
google.api_core.client_options.ClientOptions
Custom options for the client. Only the |
Exceptions | |
---|---|
Type | Description |
google.auth.exceptions.MutualTLSChannelError | If any errors happen. |
Returns | |
---|---|
Type | Description |
Tuple[str, Callable[[], Tuple[bytes, bytes]]] | returns the API endpoint and the client cert source to use. |
list_models
list_models(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.ListModelsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Lists all the models linked to this event store.
# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in:
# https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import retail_v2alpha
def sample_list_models():
# Create a client
client = retail_v2alpha.ModelServiceClient()
# Initialize request argument(s)
request = retail_v2alpha.ListModelsRequest(
parent="parent_value",
)
# Make the request
page_result = client.list_models(request=request)
# Handle the response
for response in page_result:
print(response)
Parameters | |
---|---|
Name | Description |
request |
Union[google.cloud.retail_v2alpha.types.ListModelsRequest, dict]
The request object. Request for listing models associated with a resource. |
parent |
str
Required. The parent for which to list models. Format: projects/{project_number}/locations/{location_id}/catalogs/{catalog_id} This corresponds to the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Returns | |
---|---|
Type | Description |
google.cloud.retail_v2alpha.services.model_service.pagers.ListModelsPager | Response to a ListModelRequest. Iterating over this object will yield results and resolve additional pages automatically. |
model_path
model_path(project: str, location: str, catalog: str, model: str)
Returns a fully-qualified model string.
parse_catalog_path
parse_catalog_path(path: str)
Parses a catalog path into its component segments.
parse_common_billing_account_path
parse_common_billing_account_path(path: str)
Parse a billing_account path into its component segments.
parse_common_folder_path
parse_common_folder_path(path: str)
Parse a folder path into its component segments.
parse_common_location_path
parse_common_location_path(path: str)
Parse a location path into its component segments.
parse_common_organization_path
parse_common_organization_path(path: str)
Parse a organization path into its component segments.
parse_common_project_path
parse_common_project_path(path: str)
Parse a project path into its component segments.
parse_model_path
parse_model_path(path: str)
Parses a model path into its component segments.
pause_model
pause_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.PauseModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Pauses the training of an existing model.
# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in:
# https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import retail_v2alpha
def sample_pause_model():
# Create a client
client = retail_v2alpha.ModelServiceClient()
# Initialize request argument(s)
request = retail_v2alpha.PauseModelRequest(
name="name_value",
)
# Make the request
response = client.pause_model(request=request)
# Handle the response
print(response)
Parameters | |
---|---|
Name | Description |
request |
Union[google.cloud.retail_v2alpha.types.PauseModelRequest, dict]
The request object. Request for pausing training of a model. |
name |
str
Required. The name of the model to pause. Format: projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id} This corresponds to the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Returns | |
---|---|
Type | Description |
google.cloud.retail_v2alpha.types.Model | Metadata that describes the training and serving parameters of a Model. A Model can be associated with a ServingConfig and then queried through the Predict api. |
resume_model
resume_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.ResumeModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Resumes the training of an existing model.
# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in:
# https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import retail_v2alpha
def sample_resume_model():
# Create a client
client = retail_v2alpha.ModelServiceClient()
# Initialize request argument(s)
request = retail_v2alpha.ResumeModelRequest(
name="name_value",
)
# Make the request
response = client.resume_model(request=request)
# Handle the response
print(response)
Parameters | |
---|---|
Name | Description |
request |
Union[google.cloud.retail_v2alpha.types.ResumeModelRequest, dict]
The request object. Request for resuming training of a model. |
name |
str
Required. The name of the model to resume. Format: projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id} This corresponds to the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Returns | |
---|---|
Type | Description |
google.cloud.retail_v2alpha.types.Model | Metadata that describes the training and serving parameters of a Model. A Model can be associated with a ServingConfig and then queried through the Predict api. |
tune_model
tune_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.TuneModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Tunes an existing model.
# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in:
# https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import retail_v2alpha
def sample_tune_model():
# Create a client
client = retail_v2alpha.ModelServiceClient()
# Initialize request argument(s)
request = retail_v2alpha.TuneModelRequest(
name="name_value",
)
# Make the request
operation = client.tune_model(request=request)
print("Waiting for operation to complete...")
response = operation.result()
# Handle the response
print(response)
Parameters | |
---|---|
Name | Description |
request |
Union[google.cloud.retail_v2alpha.types.TuneModelRequest, dict]
The request object. Request to manually start a tuning process now (instead of waiting for the periodically scheduled tuning to happen). |
name |
str
Required. The resource name of the model to tune. Format: projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id} This corresponds to the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Returns | |
---|---|
Type | Description |
google.api_core.operation.Operation | An object representing a long-running operation. The result type for the operation will be TuneModelResponse Response associated with a tune operation. |
update_model
update_model(request: Optional[Union[google.cloud.retail_v2alpha.types.model_service.UpdateModelRequest, dict]] = None, *, model: Optional[google.cloud.retail_v2alpha.types.model.Model] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Update of model metadata. Only fields that currently can be updated are: filtering_option, periodic_tuning_state. If other values are provided, this API method will ignore them.
# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in:
# https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import retail_v2alpha
def sample_update_model():
# Create a client
client = retail_v2alpha.ModelServiceClient()
# Initialize request argument(s)
model = retail_v2alpha.Model()
model.page_optimization_config.page_optimization_event_type = "page_optimization_event_type_value"
model.page_optimization_config.panels.candidates.serving_config_id = "serving_config_id_value"
model.page_optimization_config.panels.default_candidate.serving_config_id = "serving_config_id_value"
model.name = "name_value"
model.display_name = "display_name_value"
model.type_ = "type__value"
request = retail_v2alpha.UpdateModelRequest(
model=model,
)
# Make the request
response = client.update_model(request=request)
# Handle the response
print(response)
Parameters | |
---|---|
Name | Description |
request |
Union[google.cloud.retail_v2alpha.types.UpdateModelRequest, dict]
The request object. Request for updating an existing model. |
model |
google.cloud.retail_v2alpha.types.Model
Required. The body of the updated [Model]. This corresponds to the |
update_mask |
google.protobuf.field_mask_pb2.FieldMask
Optional. Indicates which fields in the provided 'model' to update. If not set, will by default update all fields. This corresponds to the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Returns | |
---|---|
Type | Description |
google.cloud.retail_v2alpha.types.Model | Metadata that describes the training and serving parameters of a Model. A Model can be associated with a ServingConfig and then queried through the Predict api. |