Summary of entries of Methods for langchain-google-cloud-sql-pg.
langchain_google_cloud_sql_pg.engine._get_iam_principal_email
_get_iam_principal_email(credentials: google.auth.credentials.Credentials) -> str
Get email address associated with current authenticated IAM principal.
See more: langchain_google_cloud_sql_pg.engine._get_iam_principal_email
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory
PostgresChatMessageHistory(
key: object,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
history: langchain_google_cloud_sql_pg.async_chat_message_history.AsyncPostgresChatMessageHistory,
)
PostgresChatMessageHistory constructor.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message
aadd_message(message: langchain_core.messages.base.BaseMessage) -> None
Append the message to the record in PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages
aadd_messages(
messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None
Append a list of messages to the record in PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear
aclear() -> None
Clear session memory from PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message
add_message(message: langchain_core.messages.base.BaseMessage) -> None
Append the message to the record in PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages
add_messages(
messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None
Append a list of messages to the record in PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear
clear() -> None
Clear session memory from PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create
create(
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
session_id: str,
table_name: str,
schema_name: str = "public",
) -> langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory
Create a new PostgresChatMessageHistory instance.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create_sync
create_sync(
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
session_id: str,
table_name: str,
schema_name: str = "public",
) -> langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory
Create a new PostgresChatMessageHistory instance.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create_sync
langchain_google_cloud_sql_pg.engine.Column.__post_init__
__post_init__()
Check if initialization parameters are valid.
See more: langchain_google_cloud_sql_pg.engine.Column.post_init
langchain_google_cloud_sql_pg.engine.PostgresEngine
PostgresEngine(
key: object,
pool: sqlalchemy.ext.asyncio.engine.AsyncEngine,
loop: typing.Optional[asyncio.events.AbstractEventLoop],
thread: typing.Optional[threading.Thread],
)
PostgresEngine constructor.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine
langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_chat_history_table
_ainit_chat_history_table(table_name: str, schema_name: str = "public") -> None
Create a Cloud SQL table to store chat history.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_chat_history_table
langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_vectorstore_table
_ainit_vectorstore_table(
table_name: str,
vector_size: int,
schema_name: str = "public",
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
metadata_json_column: str = "langchain_metadata",
id_column: typing.Union[
str, langchain_google_cloud_sql_pg.engine.Column
] = "langchain_id",
overwrite_existing: bool = False,
store_metadata: bool = True,
) -> None
Create a table for saving of vectors to be used with PostgresVectorStore.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_vectorstore_table
langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema
_aload_table_schema(
table_name: str, schema_name: str = "public"
) -> sqlalchemy.sql.schema.Table
Load table schema from existing table in PgSQL database.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema
langchain_google_cloud_sql_pg.engine.PostgresEngine._create
_create(
project_id: str,
region: str,
instance: str,
database: str,
ip_type: typing.Union[str, google.cloud.sql.connector.enums.IPTypes],
user: typing.Optional[str] = None,
password: typing.Optional[str] = None,
loop: typing.Optional[asyncio.events.AbstractEventLoop] = None,
thread: typing.Optional[threading.Thread] = None,
quota_project: typing.Optional[str] = None,
iam_account_email: typing.Optional[str] = None,
engine_args: typing.Mapping = {},
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create a PostgresEngine instance.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._create
langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_async
_run_as_async(
coro: typing.Awaitable[langchain_google_cloud_sql_pg.engine.T],
) -> langchain_google_cloud_sql_pg.engine.T
Run an async coroutine asynchronously.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_async
langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_sync
_run_as_sync(
coro: typing.Awaitable[langchain_google_cloud_sql_pg.engine.T],
) -> langchain_google_cloud_sql_pg.engine.T
Run an async coroutine synchronously.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_sync
langchain_google_cloud_sql_pg.engine.PostgresEngine.afrom_instance
afrom_instance(
project_id: str,
region: str,
instance: str,
database: str,
user: typing.Optional[str] = None,
password: typing.Optional[str] = None,
ip_type: typing.Union[
str, google.cloud.sql.connector.enums.IPTypes
] = IPTypes.PUBLIC,
quota_project: typing.Optional[str] = None,
iam_account_email: typing.Optional[str] = None,
engine_args: typing.Mapping = {},
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create a PostgresEngine from a Postgres instance.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.afrom_instance
langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_chat_history_table
ainit_chat_history_table(table_name: str, schema_name: str = "public") -> None
Create a Cloud SQL table to store chat history.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_chat_history_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table
ainit_document_table(
table_name: str,
schema_name: str = "public",
content_column: str = "page_content",
metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
metadata_json_column: str = "langchain_metadata",
store_metadata: bool = True,
) -> None
Create a table for saving of langchain documents.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table
ainit_vectorstore_table(
table_name: str,
vector_size: int,
schema_name: str = "public",
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
metadata_json_column: str = "langchain_metadata",
id_column: typing.Union[
str, langchain_google_cloud_sql_pg.engine.Column
] = "langchain_id",
overwrite_existing: bool = False,
store_metadata: bool = True,
) -> None
Create a table for saving of vectors to be used with PostgresVectorStore.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.close
close() -> None
Dispose of connection pool.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.close
langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine
from_engine(
engine: sqlalchemy.ext.asyncio.engine.AsyncEngine,
loop: typing.Optional[asyncio.events.AbstractEventLoop] = None,
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create an PostgresEngine instance from an AsyncEngine.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine
langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine_args
from_engine_args(
url: str | sqlalchemy.engine.url.URL, **kwargs: typing.Any
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create an PostgresEngine instance from arguments.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine_args
langchain_google_cloud_sql_pg.engine.PostgresEngine.from_instance
from_instance(
project_id: str,
region: str,
instance: str,
database: str,
user: typing.Optional[str] = None,
password: typing.Optional[str] = None,
ip_type: typing.Union[
str, google.cloud.sql.connector.enums.IPTypes
] = IPTypes.PUBLIC,
quota_project: typing.Optional[str] = None,
iam_account_email: typing.Optional[str] = None,
engine_args: typing.Mapping = {},
) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create a PostgresEngine from a Postgres instance.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_instance
langchain_google_cloud_sql_pg.engine.PostgresEngine.init_chat_history_table
init_chat_history_table(table_name: str, schema_name: str = "public") -> None
Create a Cloud SQL table to store chat history.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_chat_history_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.init_document_table
init_document_table(
table_name: str,
schema_name: str = "public",
content_column: str = "page_content",
metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
metadata_json_column: str = "langchain_metadata",
store_metadata: bool = True,
) -> None
Create a table for saving of langchain documents.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_document_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.init_vectorstore_table
init_vectorstore_table(
table_name: str,
vector_size: int,
schema_name: str = "public",
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [],
metadata_json_column: str = "langchain_metadata",
id_column: typing.Union[
str, langchain_google_cloud_sql_pg.engine.Column
] = "langchain_id",
overwrite_existing: bool = False,
store_metadata: bool = True,
) -> None
Create a table for saving of vectors to be used with PostgresVectorStore.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_vectorstore_table
langchain_google_cloud_sql_pg.indexes.BaseIndex.index_options
index_options() -> str
Set index query options for vector store initialization.
See more: langchain_google_cloud_sql_pg.indexes.BaseIndex.index_options
langchain_google_cloud_sql_pg.indexes.DistanceStrategy._generate_next_value_
_generate_next_value_(start, count, last_values)
Generate the next value when not given.
See more: langchain_google_cloud_sql_pg.indexes.DistanceStrategy.generate_next_value
langchain_google_cloud_sql_pg.indexes.HNSWIndex.index_options
index_options() -> str
Set index query options for vector store initialization.
See more: langchain_google_cloud_sql_pg.indexes.HNSWIndex.index_options
langchain_google_cloud_sql_pg.indexes.HNSWQueryOptions.to_string
to_string()
Convert index attributes to string.
See more: langchain_google_cloud_sql_pg.indexes.HNSWQueryOptions.to_string
langchain_google_cloud_sql_pg.indexes.IVFFlatIndex.index_options
index_options() -> str
Set index query options for vector store initialization.
See more: langchain_google_cloud_sql_pg.indexes.IVFFlatIndex.index_options
langchain_google_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string
to_string()
Convert index attributes to string.
See more: langchain_google_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string
langchain_google_cloud_sql_pg.indexes.QueryOptions.to_string
to_string() -> str
Convert index attributes to string.
See more: langchain_google_cloud_sql_pg.indexes.QueryOptions.to_string
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver
PostgresDocumentSaver(
key: object,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
saver: langchain_google_cloud_sql_pg.async_loader.AsyncPostgresDocumentSaver,
)
PostgresDocumentSaver constructor.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents
aadd_documents(docs: list[langchain_core.documents.base.Document]) -> None
Save documents in the DocumentSaver table.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.add_documents
add_documents(docs: list[langchain_core.documents.base.Document]) -> None
Save documents in the DocumentSaver table.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.add_documents
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete
adelete(docs: list[langchain_core.documents.base.Document]) -> None
Delete all instances of a document from the DocumentSaver table by matching the entire Document object.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.create
create(
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
content_column: str = "page_content",
metadata_columns: list[str] = [],
metadata_json_column: typing.Optional[str] = "langchain_metadata",
) -> langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver
Create an PostgresDocumentSaver instance.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.create
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.create_sync
create_sync(
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
content_column: str = "page_content",
metadata_columns: list[str] = [],
metadata_json_column: str = "langchain_metadata",
) -> langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver
Create an PostgresDocumentSaver instance.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.create_sync
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.delete
delete(docs: list[langchain_core.documents.base.Document]) -> None
Delete all instances of a document from the DocumentSaver table by matching the entire Document object.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.delete
langchain_google_cloud_sql_pg.loader.PostgresLoader
PostgresLoader(
key: object,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
loader: langchain_google_cloud_sql_pg.async_loader.AsyncPostgresLoader,
)
PostgresLoader constructor.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader
langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load
alazy_load() -> typing.AsyncIterator[langchain_core.documents.base.Document]
Load PostgreSQL data into Document objects lazily.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load
langchain_google_cloud_sql_pg.loader.PostgresLoader.aload
aload() -> list[langchain_core.documents.base.Document]
Load PostgreSQL data into Document objects.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.aload
langchain_google_cloud_sql_pg.loader.PostgresLoader.create
create(
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
query: typing.Optional[str] = None,
table_name: typing.Optional[str] = None,
schema_name: str = "public",
content_columns: typing.Optional[list[str]] = None,
metadata_columns: typing.Optional[list[str]] = None,
metadata_json_column: typing.Optional[str] = None,
format: typing.Optional[str] = None,
formatter: typing.Optional[typing.Callable] = None,
) -> langchain_google_cloud_sql_pg.loader.PostgresLoader
Create a new PostgresLoader instance.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.create
langchain_google_cloud_sql_pg.loader.PostgresLoader.create_sync
create_sync(
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
query: typing.Optional[str] = None,
table_name: typing.Optional[str] = None,
schema_name: str = "public",
content_columns: typing.Optional[list[str]] = None,
metadata_columns: typing.Optional[list[str]] = None,
metadata_json_column: typing.Optional[str] = None,
format: typing.Optional[str] = None,
formatter: typing.Optional[typing.Callable] = None,
) -> langchain_google_cloud_sql_pg.loader.PostgresLoader
Create a new PostgresLoader instance.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.create_sync
langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load
lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]
Load PostgreSQL data into Document objects lazily.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load
langchain_google_cloud_sql_pg.loader.PostgresLoader.load
load() -> list[langchain_core.documents.base.Document]
Load PostgreSQL data into Document objects.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.load
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
PostgresVectorStore(
key: object,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
vs: langchain_google_cloud_sql_pg.async_vectorstore.AsyncPostgresVectorStore,
)
PostgresVectorStore constructor.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore._select_relevance_score_fn
_select_relevance_score_fn() -> typing.Callable[[float], float]
Select a relevance function based on distance strategy.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore._select_relevance_score_fn
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_documents
aadd_documents(
documents: list[langchain_core.documents.base.Document],
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> list[str]
Embed documents and add to the table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_documents
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_texts
aadd_texts(
texts: typing.Iterable[str],
metadatas: typing.Optional[list[dict]] = None,
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> list[str]
Embed texts and add to the table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_texts
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aapply_vector_index
aapply_vector_index(
index: langchain_google_cloud_sql_pg.indexes.BaseIndex,
name: typing.Optional[str] = None,
concurrently: bool = False,
) -> None
Create an index on the vector store table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aapply_vector_index
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents
add_documents(
documents: list[langchain_core.documents.base.Document],
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> list[str]
Embed documents and add to the table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_texts
add_texts(
texts: typing.Iterable[str],
metadatas: typing.Optional[list[dict]] = None,
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> list[str]
Embed texts and add to the table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_texts
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adelete
adelete(
ids: typing.Optional[list] = None, **kwargs: typing.Any
) -> typing.Optional[bool]
Delete records from the table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adelete
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adrop_vector_index
adrop_vector_index(index_name: typing.Optional[str] = None) -> None
Drop the vector index.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adrop_vector_index
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents
afrom_documents(
documents: list[langchain_core.documents.base.Document],
embedding: langchain_core.embeddings.embeddings.Embeddings,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
ids: typing.Optional[list] = None,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: list[str] = [],
ignore_metadata_columns: typing.Optional[list[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_google_cloud_sql_pg.indexes.QueryOptions
] = None,
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Create an PostgresVectorStore instance from documents.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts
afrom_texts(
texts: list[str],
embedding: langchain_core.embeddings.embeddings.Embeddings,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
metadatas: typing.Optional[list[dict]] = None,
ids: typing.Optional[list] = None,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: list[str] = [],
ignore_metadata_columns: typing.Optional[list[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_google_cloud_sql_pg.indexes.QueryOptions
] = None,
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Create an PostgresVectorStore instance from texts.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.ais_valid_index
ais_valid_index(index_name: typing.Optional[str] = None) -> bool
Check if index exists in the table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.ais_valid_index
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search
amax_marginal_relevance_search(
query: str,
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_by_vector
amax_marginal_relevance_search_by_vector(
embedding: list[float],
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_with_score_by_vector
amax_marginal_relevance_search_with_score_by_vector(
embedding: list[float],
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[tuple[langchain_core.documents.base.Document, float]]
Return docs and distance scores selected using the maximal marginal relevance.
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.apply_vector_index
apply_vector_index(
index: langchain_google_cloud_sql_pg.indexes.BaseIndex,
name: typing.Optional[str] = None,
concurrently: bool = False,
) -> None
Create an index on the vector store table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.apply_vector_index
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.areindex
areindex(index_name: typing.Optional[str] = None) -> None
Re-index the vector store table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.areindex
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search
asimilarity_search(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]
Return docs selected by similarity search on query.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_by_vector
asimilarity_search_by_vector(
embedding: list[float],
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]
Return docs selected by vector similarity search.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_by_vector
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score
asimilarity_search_with_score(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[tuple[langchain_core.documents.base.Document, float]]
Return docs and distance scores selected by similarity search on query.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score_by_vector
asimilarity_search_with_score_by_vector(
embedding: list[float],
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[tuple[langchain_core.documents.base.Document, float]]
Return docs and distance scores selected by vector similarity search.
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create
create(
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
embedding_service: langchain_core.embeddings.embeddings.Embeddings,
table_name: str,
schema_name: str = "public",
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: list[str] = [],
ignore_metadata_columns: typing.Optional[list[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: typing.Optional[str] = "langchain_metadata",
distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_google_cloud_sql_pg.indexes.QueryOptions
] = None,
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Create a new PostgresVectorStore instance.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create_sync
create_sync(
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
embedding_service: langchain_core.embeddings.embeddings.Embeddings,
table_name: str,
schema_name: str = "public",
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: list[str] = [],
ignore_metadata_columns: typing.Optional[list[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_google_cloud_sql_pg.indexes.QueryOptions
] = None,
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Create a new PostgresVectorStore instance.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create_sync
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.delete
delete(
ids: typing.Optional[list] = None, **kwargs: typing.Any
) -> typing.Optional[bool]
Delete records from the table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.delete
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.drop_vector_index
drop_vector_index(index_name: typing.Optional[str] = None) -> None
Drop the vector index.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.drop_vector_index
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents
from_documents(
documents: list[langchain_core.documents.base.Document],
embedding: langchain_core.embeddings.embeddings.Embeddings,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
ids: typing.Optional[list] = None,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: list[str] = [],
ignore_metadata_columns: typing.Optional[list[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_google_cloud_sql_pg.indexes.QueryOptions
] = None,
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Create an PostgresVectorStore instance from documents.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts
from_texts(
texts: list[str],
embedding: langchain_core.embeddings.embeddings.Embeddings,
engine: langchain_google_cloud_sql_pg.engine.PostgresEngine,
table_name: str,
schema_name: str = "public",
metadatas: typing.Optional[list[dict]] = None,
ids: typing.Optional[list] = None,
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: list[str] = [],
ignore_metadata_columns: typing.Optional[list[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_google_cloud_sql_pg.indexes.QueryOptions
] = None,
) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Create an PostgresVectorStore instance from texts.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.is_valid_index
is_valid_index(index_name: typing.Optional[str] = None) -> bool
Check if index exists in the table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.is_valid_index
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search
max_marginal_relevance_search(
query: str,
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_by_vector
max_marginal_relevance_search_by_vector(
embedding: list[float],
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_with_score_by_vector
max_marginal_relevance_search_with_score_by_vector(
embedding: list[float],
k: typing.Optional[int] = None,
fetch_k: typing.Optional[int] = None,
lambda_mult: typing.Optional[float] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[tuple[langchain_core.documents.base.Document, float]]
Return docs and distance scores selected using the maximal marginal relevance.
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.reindex
reindex(index_name: typing.Optional[str] = None) -> None
Re-index the vector store table.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.reindex
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search
similarity_search(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]
Return docs selected by similarity search on query.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_by_vector
similarity_search_by_vector(
embedding: list[float],
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]
Return docs selected by vector similarity search.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_by_vector
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score
similarity_search_with_score(
query: str,
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[tuple[langchain_core.documents.base.Document, float]]
Return docs and distance scores selected by similarity search on query.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score_by_vector
similarity_search_with_score_by_vector(
embedding: list[float],
k: typing.Optional[int] = None,
filter: typing.Optional[str] = None,
**kwargs: typing.Any
) -> list[tuple[langchain_core.documents.base.Document, float]]
Return docs and distance scores selected by similarity search on vector.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score_by_vector