- 1.32.0 (latest)
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
DisplayOptions(
max_columns: int = 20,
max_rows: int = 25,
progress_bar: typing.Optional[str] = "auto",
repr_mode: typing.Literal["head", "deferred"] = "head",
max_info_columns: int = 100,
max_info_rows: typing.Optional[int] = 200000,
memory_usage: bool = True,
)
Encapsulates configuration for displaying objects.
Attributes | |
---|---|
Name | Description |
max_columns |
int, default 20
If max_columns is exceeded, switch to truncate view.
|
max_rows |
int, default 25
If max_rows is exceeded, switch to truncate view.
|
progress_bar |
Optional(str), default "auto"
Determines if progress bars are shown during job runs. Valid values are auto , notebook , and terminal . Set
to None to remove progress bars.
|
repr_mode |
Literal[
head :
Execute, download, and display results (limited to head) from
dataframe and series objects during repr.
deferred :
Prevent executions from repr statements in dataframe and series objects.
Instead estimated bytes processed will be shown. Dataframe and Series
objects can still be computed with methods that explicitly execute and
download results.
|
max_info_columns |
int
max_info_columns is used in DataFrame.info method to decide if per column information will be printed. |
max_info_rows |
int or None
df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. |
memory_usage |
bool
This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False, |