Class PaLM2TextEmbeddingGenerator (0.18.0)

PaLM2TextEmbeddingGenerator(
    model_name: typing.Literal[
        "textembedding-gecko", "textembedding-gecko-multilingual"
    ] = "textembedding-gecko",
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None,
)

PaLM2 text embedding generator LLM model.

Parameters

Name Description
model_name str, Default to "textembedding-gecko"

The model for text embedding. “textembedding-gecko” returns model embeddings for text inputs. "textembedding-gecko-multilingual" returns model embeddings for text inputs which support over 100 languages Default to "textembedding-gecko".

session bigframes.Session or None

BQ session to create the model. If None, use the global default session.

connection_name str or None

connection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>.

Methods

__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values

get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

Parameter
Name Description
deep bool, default True

Default True. If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
Type Description
Dictionary A dictionary of parameter names mapped to their values.

predict

predict(
    X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

Parameter
Name Description
X bigframes.dataframe.DataFrame or bigframes.series.Series

Input DataFrame, which needs to contain a column with name "content". Only the column will be used as input. Content can include preamble, questions, suggestions, instructions, or examples.

Returns
Type Description
bigframes.dataframe.DataFrame DataFrame of shape (n_samples, n_input_columns + n_prediction_columns). Returns predicted values.

register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

After register, go to Google Cloud Console (https://console.cloud.google.com/vertex-ai/models) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.

Parameter
Name Description
vertex_ai_model_id Optional[str], default None

optional string id as model id in Vertex. If not set, will by default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation.