TablesClient(
*,
project=None,
region="us-central1",
credentials=None,
client=None,
prediction_client=None,
gcs_client=None,
**kwargs
)
AutoML Tables API helper.
This is intended to simplify usage of the auto-generated python client,
in particular for the AutoML Tables product
<https://cloud.google.com/automl-tables/>
_.
Methods
TablesClient
TablesClient(
*,
project=None,
region="us-central1",
credentials=None,
client=None,
prediction_client=None,
gcs_client=None,
**kwargs
)
Constructor.
Example for US region:
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ...
Example for EU region:
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client_options = {'api_endpoint': 'eu-automl.googleapis.com:443'} client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='eu', client_options=client_options) ...
Name | Description |
project |
Optional[str]
The project ID of the GCP project all future calls will default to. Most methods take |
region |
Optional[str]
The region all future calls will default to. Most methods take |
credentials |
Optional[google.auth.credentials.Credentials]
The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to |
client |
Optional[google.automl_v1beta1.AutoMlClient]
An AutoMl Client to use for requests. |
prediction_client |
Optional[google.automl_v1beta1.PredictionClient]
A Prediction Client to use for requests. |
gcs_client |
Optional[google.automl_v1beta1.GcsClient]
A Storage client to use for requests. |
client_options |
Union[dict, google.api_core.client_options.ClientOptions]
Custom options for the client. |
client_info |
google.api_core.gapic_v1.client_info.ClientInfo
The client info used to send a user-agent string along with API requests. |
batch_predict
batch_predict(
*,
pandas_dataframe=None,
bigquery_input_uri=None,
bigquery_output_uri=None,
gcs_input_uris=None,
gcs_output_uri_prefix=None,
model=None,
model_name=None,
model_display_name=None,
project=None,
region=None,
credentials=None,
inputs=None,
params={},
**kwargs
)
Makes a batch prediction on a model. This does not require the model to be deployed.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.batch_predict( ... gcs_input_uris='gs://inputs/input.csv', ... gcs_output_uri_prefix='gs://outputs/', ... model_display_name='my_model' ... ).result() ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the model. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
credentials |
Optional[google.auth.credentials.Credentials]
The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. |
pandas_dataframe |
Optional[pandas.DataFrame]
A Pandas Dataframe object containing the data you want to predict off of. The data will be converted to CSV, and this CSV will be staged to GCS in |
gcs_input_uris |
Optional(Union[List[str], str])
Either a list of or a single GCS URI containing the data you want to predict off of. This must be supplied if neither |
gcs_output_uri_prefix |
Optional[str]
The folder in GCS you want to write output to. This must be supplied if |
bigquery_input_uri |
Optional[str]
The BigQuery table to input data from. This must be supplied if neither |
bigquery_output_uri |
Optional[str]
The BigQuery table to output data to. This must be supplied if |
model_display_name |
Optional[str]
The human-readable name given to the model you want to predict with. This must be supplied if |
model_name |
Optional[str]
The AutoML-assigned name given to the model you want to predict with. This must be supplied if |
model |
Optional[model]
The |
params |
Optional[dict]
Additional domain-specific parameters for the predictions, any string must be up to 25000 characters long. |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
Type | Description |
google.api_core.operation.Operation | An operation future that can be used to check for completion synchronously or asynchronously. |
clear_test_train_column
clear_test_train_column(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
project=None,
region=None,
**kwargs
)
Clears the test/train (ml_use) column which designates which data belongs to the test and train sets.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.clear_test_train_column(dataset_display_name='my_dataset')
Name | Description |
project |
Optional[str]
The ID of the project that owns the table. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to update the test/train column of. If no |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to update the test/train column of. If no |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
clear_time_column
clear_time_column(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
project=None,
region=None,
**kwargs
)
Clears the time column which designates which data will be of type timestamp and will be used for the timeseries data.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.clear_time_column(dataset_display_name='my_dataset')
Name | Description |
project |
Optional[str]
The ID of the project that owns the table. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to update the time column of. If no |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to update the time column of. If no |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
clear_weight_column
clear_weight_column(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
project=None,
region=None,
**kwargs
)
Clears the weight column for a given dataset.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.clear_weight_column(dataset_display_name='my_dataset')
Name | Description |
project |
Optional[str]
The ID of the project that owns the table. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to update the weight column of. If no |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to update the weight column of. If no |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
create_dataset
create_dataset(
dataset_display_name, *, metadata={}, project=None, region=None, **kwargs
)
Create a dataset. Keep in mind, importing data is a separate step.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... d = client.create_dataset(dataset_display_name='my_dataset')
Name | Description |
project |
Optional[str]
The ID of the project that will own the dataset. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
dataset_display_name |
str
A human-readable name to refer to this dataset by. |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
create_model
create_model(
model_display_name,
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
train_budget_milli_node_hours=None,
optimization_objective=None,
project=None,
region=None,
model_metadata=None,
include_column_spec_names=None,
exclude_column_spec_names=None,
disable_early_stopping=False,
**kwargs
)
Create a model. This will train your model on the given dataset.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... m = client.create_model( ... 'my_model', ... dataset_display_name='my_dataset', ... train_budget_milli_node_hours=1000 ... )
m.result() # blocks on result
Name | Description |
project |
Optional[str]
The ID of the project that will own the model. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
model_display_name |
str
A human-readable name to refer to this model by. |
train_budget_milli_node_hours |
int
The amount of time (in thousandths of an hour) to spend training. This value must be between 1,000 and 72,000 inclusive (between 1 and 72 hours). |
optimization_objective |
str
The metric AutoML tables should optimize for. |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to train your model on. This must be supplied if |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to train your model on. This must be supplied if |
dataset |
Optional[Dataset]
The |
model_metadata |
Optional[Dict]
Optional model metadata to supply to the client. |
include_column_spec_names |
Optional[str]
The list of the names of the columns you want to include to train your model on. |
exclude_column_spec_names |
Optional[str]
The list of the names of the columns you want to exclude and not train your model on. |
disable_early_stopping |
Optional[bool]
True if disable early stopping. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used. |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
Type | Description |
google.api_core.operation.Operation | An operation future that can be used to check for completion synchronously or asynchronously. |
delete_dataset
delete_dataset(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
project=None,
region=None,
**kwargs
)
Deletes a dataset. This does not delete any models trained on this dataset.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... op = client.delete_dataset(dataset_display_name='my_dataset')
op.result() # blocks on delete request
Name | Description |
project |
Optional[str]
The ID of the project that owns the dataset. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to delete. This must be supplied if |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to delete. This must be supplied if |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
Type | Description |
google.api_core.operation.Operation | An operation future that can be used to check for completion synchronously or asynchronously. |
delete_model
delete_model(
*,
model=None,
model_display_name=None,
model_name=None,
project=None,
region=None,
**kwargs
)
Deletes a model. Note this will not delete any datasets associated with this model.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... op = client.delete_model(model_display_name='my_model')
op.result() # blocks on delete request
Name | Description |
project |
Optional[str]
The ID of the project that owns the model. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
model_display_name |
Optional[str]
The human-readable name given to the model you want to delete. This must be supplied if |
model_name |
Optional[str]
The AutoML-assigned name given to the model you want to delete. This must be supplied if |
model |
Optional[model]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
Type | Description |
google.api_core.operation.Operation | An operation future that can be used to check for completion synchronously or asynchronously. |
deploy_model
deploy_model(
*,
model=None,
model_name=None,
model_display_name=None,
project=None,
region=None,
**kwargs
)
Deploys a model. This allows you make online predictions using the model you've deployed.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... op = client.deploy_model(model_display_name='my_model')
op.result() # blocks on deploy request
Name | Description |
project |
Optional[str]
The ID of the project that owns the model. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
model_display_name |
Optional[str]
The human-readable name given to the model you want to deploy. This must be supplied if |
model_name |
Optional[str]
The AutoML-assigned name given to the model you want to deploy. This must be supplied if |
model |
Optional[model]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
Type | Description |
google.api_core.operation.Operation | An operation future that can be used to check for completion synchronously or asynchronously. |
export_data
export_data(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
gcs_output_uri_prefix=None,
bigquery_output_uri=None,
project=None,
region=None,
**kwargs
)
Exports data from a dataset.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... d = client.create_dataset(dataset_display_name='my_dataset')
response = client.export_data(dataset=d, ... gcs_output_uri_prefix='gs://cloud-ml-tables-data/bank-marketing.csv') ... def callback(operation_future): ... result = operation_future.result() ... response.add_done_callback(callback)
Name | Description |
project |
Optional[str]
The ID of the project that owns the dataset. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to export data from. This must be supplied if |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to export data from. This must be supplied if |
dataset |
Optional[Dataset]
The |
gcs_output_uri_prefix |
Optional[Union[str, Sequence[str]]]
A single |
bigquery_output_uri |
Optional[str]
A URI pointing to the BigQuery table containing the data to export. This must be supplied if |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
Type | Description |
google.api_core.operation.Operation | An operation future that can be used to check for completion synchronously or asynchronously. |
get_column_spec
get_column_spec(column_spec_name, *, project=None, region=None, **kwargs)
Gets a single column spec in a particular project and region.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... d = client.get_column_spec('my_column_spec')
Name | Description |
column_spec_name |
str
This is the fully-qualified name generated by the AutoML API for this column spec. |
project |
Optional[str]
The ID of the project that owns the column. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
get_dataset
get_dataset(
*, project=None, region=None, dataset_name=None, dataset_display_name=None, **kwargs
)
Gets a single dataset in a particular project and region.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... d = client.get_dataset(dataset_display_name='my_dataset')
Name | Description |
project |
Optional[str]
The ID of the project that owns the dataset. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
dataset_name |
Optional[str]
This is the fully-qualified name generated by the AutoML API for this dataset. This is not to be confused with the human-assigned |
dataset_display_name |
Optional[str]
This is the name you provided for the dataset when first creating it. Either |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
get_model
get_model(
*, project=None, region=None, model_name=None, model_display_name=None, **kwargs
)
Gets a single model in a particular project and region.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... d = client.get_model(model_display_name='my_model')
Name | Description |
project |
Optional[str]
The ID of the project that owns the model. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
model_name |
Optional[str]
This is the fully-qualified name generated by the AutoML API for this model. This is not to be confused with the human-assigned |
model_display_name |
Optional[str]
This is the name you provided for the model when first creating it. Either |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
get_model_evaluation
get_model_evaluation(model_evaluation_name, *, project=None, region=None, **kwargs)
Gets a single evaluation model in a particular project and region.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... d = client.get_model_evaluation('my_model_evaluation')
Name | Description |
model_evaluation_name |
str
This is the fully-qualified name generated by the AutoML API for this model evaluation. |
project |
Optional[str]
The ID of the project that owns the model. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
get_table_spec
get_table_spec(table_spec_name, *, project=None, region=None, **kwargs)
Gets a single table spec in a particular project and region.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... d = client.get_table_spec('my_table_spec')
Name | Description |
table_spec_name |
str
This is the fully-qualified name generated by the AutoML API for this table spec. |
project |
Optional[str]
The ID of the project that owns the table. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
import_data
import_data(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
pandas_dataframe=None,
gcs_input_uris=None,
bigquery_input_uri=None,
project=None,
region=None,
credentials=None,
**kwargs
)
Imports data into a dataset.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... d = client.create_dataset(dataset_display_name='my_dataset')
response = client.import_data(dataset=d, ... gcs_input_uris='gs://cloud-ml-tables-data/bank-marketing.csv') ... def callback(operation_future): ... result = operation_future.result() ... response.add_done_callback(callback)
Name | Description |
project |
Optional[str]
The ID of the project that owns the dataset. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
credentials |
Optional[google.auth.credentials.Credentials]
The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to import data into. This must be supplied if |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to import data into. This must be supplied if |
dataset |
Optional[Dataset]
The |
pandas_dataframe |
Optional[pandas.DataFrame]
A Pandas Dataframe object containing the data to import. The data will be converted to CSV, and this CSV will be staged to GCS in |
gcs_input_uris |
Optional[Union[str, Sequence[str]]]
Either a single |
bigquery_input_uri |
Optional[str]
A URI pointing to the BigQuery table containing the data to import. This must be supplied if neither |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
Type | Description |
google.api_core.operation.Operation | An operation future that can be used to check for completion synchronously or asynchronously. |
list_column_specs
list_column_specs(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
table_spec_name=None,
table_spec_index=0,
project=None,
region=None,
**kwargs
)
Lists column specs.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... for s in client.list_column_specs(dataset_display_name='my_dataset') ... # process the spec ... pass ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the columns. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
table_spec_name |
Optional[str]
The AutoML-assigned name for the table whose specs you want to read. If not supplied, the client can determine this name from a source |
table_spec_index |
Optional[int]
If no |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to read specs from. If no |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to read specs from. If no |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
list_datasets
list_datasets(*, project=None, region=None, **kwargs)
List all datasets in a particular project and region.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... ds = client.list_datasets()
for d in ds: ... # do something ... pass ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the datasets. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
list_model_evaluations
list_model_evaluations(
*,
project=None,
region=None,
model=None,
model_display_name=None,
model_name=None,
**kwargs
)
List all model evaluations for a given model.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... ms = client.list_model_evaluations(model_display_name='my_model')
for m in ms: ... # do something ... pass ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the model. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
model_display_name |
Optional[str]
The human-readable name given to the model you want to list evaluations for. This must be supplied if |
model_name |
Optional[str]
The AutoML-assigned name given to the model you want to list evaluations for. This must be supplied if |
model |
Optional[model]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
list_models
list_models(*, project=None, region=None, **kwargs)
List all models in a particular project and region.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... ms = client.list_models()
for m in ms: ... # do something ... pass ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the models. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
list_table_specs
list_table_specs(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
project=None,
region=None,
**kwargs
)
Lists table specs.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... for s in client.list_table_specs(dataset_display_name='my_dataset') ... # process the spec ... pass ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the dataset. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to read specs from. This must be supplied if |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to read specs from. This must be supplied if |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
predict
predict(
inputs,
*,
model=None,
model_name=None,
model_display_name=None,
feature_importance=False,
project=None,
region=None,
**kwargs
)
Makes a prediction on a deployed model. This will fail if the model was not deployed.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.predict(inputs={'Age': 30, 'Income': 12, 'Category': 'A'} ... model_display_name='my_model') ... client.predict([30, 12, 'A'], model_display_name='my_model')
Name | Description |
project |
Optional[str]
The ID of the project that owns the model. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
inputs |
Union[List[str], Dict[str, str]]
Either the sorted list of column values to predict with, or a key-value map of column display name to value to predict with. |
model_display_name |
Optional[str]
The human-readable name given to the model you want to predict with. This must be supplied if |
model_name |
Optional[str]
The AutoML-assigned name given to the model you want to predict with. This must be supplied if |
model |
Optional[model]
The |
feature_importance |
bool
True if enable feature importance explainability. The default is False. |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
set_target_column
set_target_column(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
table_spec_name=None,
table_spec_index=0,
column_spec_name=None,
column_spec_display_name=None,
project=None,
region=None,
**kwargs
)
Sets the target column for a given table.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.set_target_column(dataset_display_name='my_dataset', ... column_spec_display_name='Income') ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the table. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
column_spec_name |
Optional[str]
The name AutoML-assigned name for the column you want to set as the target column. |
column_spec_display_name |
Optional[str]
The human-readable name of the column you want to set as the target column. If this is supplied in place of |
table_spec_name |
Optional[str]
The AutoML-assigned name for the table whose target column you want to set . If not supplied, the client can determine this name from a source |
table_spec_index |
Optional[int]
If no |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to update the target column of. If no |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to update the target column of. If no |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
set_test_train_column
set_test_train_column(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
table_spec_name=None,
table_spec_index=0,
column_spec_name=None,
column_spec_display_name=None,
project=None,
region=None,
**kwargs
)
Sets the test/train (ml_use) column which designates which data belongs to the test and train sets. This column must be categorical.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.set_test_train_column(dataset_display_name='my_dataset', ... column_spec_display_name='TestSplit') ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the table. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
column_spec_name |
Optional[str]
The name AutoML-assigned name for the column you want to set as the test/train column. |
column_spec_display_name |
Optional[str]
The human-readable name of the column you want to set as the test/train column. If this is supplied in place of |
table_spec_name |
Optional[str]
The AutoML-assigned name for the table whose test/train column you want to set . If not supplied, the client can determine this name from a source |
table_spec_index |
Optional[int]
If no |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to update the test/train column of. If no |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to update the test/train column of. If no |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
set_time_column
set_time_column(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
table_spec_name=None,
table_spec_index=0,
column_spec_name=None,
column_spec_display_name=None,
project=None,
region=None,
**kwargs
)
Sets the time column which designates which data will be of type timestamp and will be used for the timeseries data. This column must be of type timestamp.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.set_time_column(dataset_display_name='my_dataset', ... column_spec_display_name='Unix Time') ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the table. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
column_spec_name |
Optional[str]
The name AutoML-assigned name for the column you want to set as the time column. |
column_spec_display_name |
Optional[str]
The human-readable name of the column you want to set as the time column. If this is supplied in place of |
table_spec_name |
Optional[str]
The AutoML-assigned name for the table whose time column you want to set . If not supplied, the client can determine this name from a source |
table_spec_index |
Optional[int]
If no |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to update the time column of. If no |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to update the time column of. If no |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
set_weight_column
set_weight_column(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
table_spec_name=None,
table_spec_index=0,
column_spec_name=None,
column_spec_display_name=None,
project=None,
region=None,
**kwargs
)
Sets the weight column for a given table.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.set_weight_column(dataset_display_name='my_dataset', ... column_spec_display_name='Income') ...
Name | Description |
project |
Optional[str]
The ID of the project that owns the table. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
column_spec_name |
Optional[str]
The name AutoML-assigned name for the column you want to set as the weight column. |
column_spec_display_name |
Optional[str]
The human-readable name of the column you want to set as the weight column. If this is supplied in place of |
table_spec_name |
Optional[str]
The AutoML-assigned name for the table whose weight column you want to set . If not supplied, the client can determine this name from a source |
table_spec_index |
Optional[int]
If no |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to update the weight column of. If no |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to update the weight column of. If no |
dataset |
Optional[Dataset]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
undeploy_model
undeploy_model(
*,
model=None,
model_name=None,
model_display_name=None,
project=None,
region=None,
**kwargs
)
Undeploys a model.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... op = client.undeploy_model(model_display_name='my_model')
op.result() # blocks on undeploy request
Name | Description |
project |
Optional[str]
The ID of the project that owns the model. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
model_display_name |
Optional[str]
The human-readable name given to the model you want to undeploy. This must be supplied if |
model_name |
Optional[str]
The AutoML-assigned name given to the model you want to undeploy. This must be supplied if |
model |
Optional[model]
The |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |
Type | Description |
google.api_core.operation.Operation | An operation future that can be used to check for completion synchronously or asynchronously. |
update_column_spec
update_column_spec(
*,
dataset=None,
dataset_display_name=None,
dataset_name=None,
table_spec_name=None,
table_spec_index=0,
column_spec_name=None,
column_spec_display_name=None,
type_code=None,
nullable=None,
project=None,
region=None,
**kwargs
)
Updates a column's specs.
.. rubric:: Example
from google.cloud import automl_v1beta1
from google.oauth2 import service_account
client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('`/.gcp/account.json'), ... project='my-project', region='us-central1') ... client.update_column_spec(dataset_display_name='my_dataset', ... column_spec_display_name='Outcome', type_code='CATEGORY') ...
Name | Description |
dataset |
Optional[Dataset]
The |
dataset_display_name |
Optional[str]
The human-readable name given to the dataset you want to update specs on. If no |
dataset_name |
Optional[str]
The AutoML-assigned name given to the dataset you want to update specs one. If no |
table_spec_name |
Optional[str]
The AutoML-assigned name for the table whose specs you want to update. If not supplied, the client can determine this name from a source |
table_spec_index |
Optional[int]
If no |
column_spec_name |
Optional[str]
The name AutoML-assigned name for the column you want to update. |
column_spec_display_name |
Optional[str]
The human-readable name of the column you want to update. If this is supplied in place of |
type_code |
Optional[str]
The desired 'type_code' of the column. For more information on the available types, please see the documentation: https://cloud.google.com/automl-tables/docs/reference/rpc/google.cloud.automl.v1beta1#typecode |
nullable |
Optional[bool]
Set to |
project |
Optional[str]
The ID of the project that owns the columns. If you have initialized the client with a value for |
region |
Optional[str]
If you have initialized the client with a value for |
Type | Description |
google.api_core.exceptions.GoogleAPICallError | If the request failed for any reason. |
google.api_core.exceptions.RetryError | If the request failed due to a retryable error and retry attempts failed. |
ValueError | If required parameters are missing. |